Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction (School Vision, Mission & Tradition)</td>
<td>1</td>
</tr>
<tr>
<td>Overview of the B.Sc. (Pharm.) Degree Course</td>
<td>2</td>
</tr>
<tr>
<td>2 Structures, Management and Systems in Place</td>
<td>3</td>
</tr>
<tr>
<td>Faculty and School Committees and Support Structures</td>
<td>3</td>
</tr>
<tr>
<td>The School of Pharmacy & Pharmaceutical Sciences Academic Staff</td>
<td>5</td>
</tr>
<tr>
<td>3 Safety within the School</td>
<td>8</td>
</tr>
<tr>
<td>4 University Study</td>
<td>9</td>
</tr>
<tr>
<td>Plagiarism</td>
<td>10</td>
</tr>
<tr>
<td>5 B.Sc. (Pharm.) Degree</td>
<td>11</td>
</tr>
<tr>
<td>Learning Outcomes for the B.Sc. (Pharm.) Degree Programme</td>
<td>12</td>
</tr>
<tr>
<td>Course Modules</td>
<td>14</td>
</tr>
<tr>
<td>Examination Regulations in the School of Pharmacy & Pharmaceutical Sciences</td>
<td>15</td>
</tr>
<tr>
<td>Foundation Scholarship Examination</td>
<td>20</td>
</tr>
<tr>
<td>Prizes</td>
<td>21</td>
</tr>
<tr>
<td>Junior Freshman (1st Year)</td>
<td>23</td>
</tr>
<tr>
<td>Senior Freshman (2nd Year)</td>
<td>45</td>
</tr>
<tr>
<td>Junior Sophister (3rd Year)</td>
<td>71</td>
</tr>
<tr>
<td>Senior Sophister (4th Year)</td>
<td>97</td>
</tr>
<tr>
<td>Guidelines on Marking (JF & SF)</td>
<td>119</td>
</tr>
<tr>
<td>Guidelines on Marking (JS & SS)</td>
<td>120</td>
</tr>
<tr>
<td>Guidelines for Students at Examinations</td>
<td>121</td>
</tr>
<tr>
<td>College Maps</td>
<td>123</td>
</tr>
</tbody>
</table>
This handbook applies to all students taking the B.Sc. (Pharm.) Degree taught by the School of Pharmacy & Pharmaceutical Sciences. It provides a guide to what is expected of you on this programme, and the academic and personal support available to you. Please retain for future reference. The information provided in this handbook is accurate at the time of preparation. Any necessary revisions will be notified to students via email. Please note that, in the event of any conflict or inconsistency between the General Regulations published in the University Calendar and information contained in course handbooks, the provisions of the General Regulations will prevail.

1 INTRODUCTION

1.1 SCHOOL VISION

- To produce pharmacy graduates and specialist graduates who will enhance health care through their patient-oriented understanding of aspects of disease, health strategies, medicines and pharmacoeconomics of existing and new therapies.
- To deliver pharmacy and science postgraduates with the qualified specialist skills required by Ireland’s pharmaceutical/chemical and biotechnological industries.
- To encourage research by engaging high quality pharmaceutical scientists capable of devising new drug entities, syntheses, analytical protocols and delivery systems.

1.2 SCHOOL MISSION

- To ensure the delivery of the B.Sc. (Pharm.) Course in compliance with EU syllabus specifications and educational standards, as well as accreditation requirements of the Pharmaceutical Society of Ireland to a broad, socially inclusive student base comprising Irish, EU, non-EU, mature and graduate entrants;
- To provide quality educational programmes through the collective input of innovative teaching methodologies delivered by committed academics, researchers and healthcare professionals.
- To develop new postgraduate courses appropriate to national, European and international demands and standards in the pharmaceutical context;
- To double the number of taught postgraduate students through enrolling the maximum number of students into existing taught courses and encouraging life-long learning by devising distance-learning programmes and electronic formatting of modules;
- To double the number of research students and encourage collaboration with other researchers of schools and institutes in health sciences;
- To enhance the national and international reputation of the school by attracting world-renowned researchers.

1.3 TRADITION

Brief history
The School of Pharmacy and Pharmaceutical Sciences at Trinity College Dublin was the first centre for pharmaceutical education in Ireland. A Pharmacy Degree has been offered by the School since 1977. The School has also delivered courses leading to Diploma qualifications for Pharmaceutical Assistants (until 1983) and Pharmaceutical Technicians (until 2006). Originally sited in Ballsbridge and teaching a maximum intake of 50 students per year, since October 1997 the School has been located at the East End of the TCD campus in the Panoz Institute, a purpose-built facility (ca. 3000 m²) for which the School actively fund-raised.

The Pharmacy undergraduate syllabus leading to a B.Sc. (Pharm.) degree is taught over 4 years and satisfies the accreditation requirements of the Pharmaceutical Society of Ireland, i.e., the statutory registration body. It also complies with the training standards defined in three pharmaceutically relevant EU Directives: 2005/36/EC as amended, 2001/82/EC as amended and 2001/83/EC as amended.

Directive 2005/36/EC specifies the educational requirements necessary for the mutual recognition of registered pharmacists within the European Economic Area (EEA) member states. Directives 2001/82/EC and 2001/83/EC specify the educational requirements necessary to perform the functions in the pharmaceutical industry of the ‘Qualified Person’, i.e., one who is responsible for the supervision and control of the manufacture of pharmaceutical products for human and veterinary use.
Undergraduate students attend lectures, tutorials, CAL sessions and practical laboratory classes in all subject areas to encourage their understanding of aspects of healthcare, drug sources, medicines preparation, analysis, quality control, chemistry, metabolism, safety, efficacy, regulation, etc.

Academic staff in the School, though originally assigned to the traditional pharmacy disciplines (Pharmaceutics & Pharmaceutical Technology, Pharmaceutical Chemistry, Pharmacology and Pharmacognosy, and more recently Practice of Pharmacy), are now teaching integrated courses formulated in the context of European and international curriculum strategies. Staff of the School provide courses and research facilities for approximately 330 students per year (280 undergraduate B.Sc. (Pharm.); 50 postgraduate research students). In addition, staff contribute to four postgraduate taught full-time, part-time and distance-learning M.Sc./Diploma courses. The Pharmaceutical Sciences and Practice of Pharmacy subject areas are currently taught by part- and full-time academic staff, in conjunction with teacher-practitioners and a number of external lecturers from community pharmacy, hospital pharmacy, the pharmaceutical industry and regulatory bodies.

Academic staff are actively engaged in research programmes in the School: The School’s research activities can be broadly described as consisting of four main research areas, namely:
1. Drug design, discovery and analysis (Pharmaceutical Chemistry)
2. Drug development (Pharmacology)
3. Drug delivery (Pharmaceutics)
4. Clinical pharmacology, therapeutics and pharmacy practice

Eleven Research Groups have been formally established with the idea to foster interdisciplinary and collaboration both within the former Pharmacy Departments and with likeminded Schools/Departments within College. These Research Groups are: Advanced Drug Delivery, Clinical Pharmacokinetics, Natural Products, Drug Design and Discovery, Neuropharmacology, Platelets, Inflammatory Bowel Diseases, Drug Transport and Targeting, Pharmacy Practice, Allergy, and Pharmaceutical Nanosciences.

1.4 CORE VALUES
- Courses catering for a broad socially-inclusive student base varying in age, nationality, and ability;
- Educational programmes that integrate pharmaceutical sciences and clinical skills;
- Practice-based courses which foster life-long learning and continuing professional development;
- Innovative and flexible research-led teaching using methods to encourage student-oriented learning;
- Programmes to encourage integration and open partnership with health care professionals;
- Internationally recognised scholarship at undergraduate and postgraduate levels.

1.5 OVERVIEW OF THE B.SC. (PHARM.) DEGREE COURSE
The aim of the B.Sc. (Pharm.) course is to provide students with a basic education in the Pharmaceutical Sciences and the Practice of Pharmacy in all its forms. To quote from the Accreditation Standards of the Pharmaceutical Society of Ireland (PSI), "The purpose of undergraduate pharmacy education (the pharmacy degree programme) is to produce pharmacy graduates who have the knowledge, skills and attributes to safely participate in the National Pharmacy Internship Programme (NPPIP). Graduates should be prepared for patient-centered pharmacy practice, and their learning should be based upon and underpinned by appropriate and sufficient understanding of the principles and techniques of the pharmaceutical, biomedical and social sciences." (Interim Accreditation Standards for the Level 8 Bachelor Degree awarded on the successful completion of the 4 year undergraduate pharmacy degree programme. Approved by the Council of the PSI on 28th March 2012.)

In order to achieve the aims of the course, the syllabus has been designed to provide you firstly with learning opportunities in some of the basic sciences (such as aspects of Chemistry, Biochemistry, Biology, Physics, Physiology, Microbiology, Mathematics and Statistics) which are relevant to an understanding of the Pharmaceutical Sciences and to the Practice of Pharmacy. Subsequently the Pharmaceutical Sciences (Pharmaceutics and Pharmaceutical Technology, Pharmaceutical Chemistry, Pharmacognosy, Pharmacology) are introduced and taught in an integrated way, and your knowledge of them and their relevance to pharmacy will develop progressively over the four years of the course. Interwoven through the entire programme are classes in the Practice of Pharmacy, designed for you to contextualise, build upon and apply the knowledge and skills gained in the scientific modules in a harmonized manner.
2 STRUCTURES, MANAGEMENT AND SYSTEMS IN PLACE

2.1 COLLEGE
For details see: http://www.tcd.ie/vpcao/academic-governance/

2.2 SCHOOL GOVERNANCE
The School of Pharmacy & Pharmaceutical Sciences is one of the four Schools which make up the Faculty of Health Sciences. The other three are the School of Dental Science, the School of Medicine and the School of Nursing and Midwifery. http://www.tcd.ie/local/structures/governance.php

HEAD OF SCHOOL
Professor Anne Marie Healy, B.SC. (PHARM.), PH.D., M.P.S.I., F.T.C.D. (2010)
Heads of School are appointed by, and are formally accountable to, the Board. The Head of School is a member of the College Head of Schools Committee. http://www.tcd.ie/teaching-learning/academic-governance/head-of-school.php

DIRECTOR OF TEACHING AND LEARNING (UNDERGRADUATE)
Asst. Professor Astrid Sasse, STAATSEXAMEN PHARMAZIE (BERLIN), DR. RER. NAT. (BERLIN), M.A., M.P.S.I.
The Director of Teaching and Learning (Undergraduate) has delegated responsibility for the undergraduate affairs of the School and plays a central strategic role with regard to both existing and new teaching programmes. The Director of UGTL is a member of the College Undergraduate Studies Committee. http://www.tcd.ie/teaching-learning/academic-governance/dir-of-ug-tl.php

DIRECTOR OF TEACHING AND LEARNING (POSTGRADUATE)
Asst. Professor John Gilmer, B.A., PH.D.
The Director of Teaching and Learning (Postgraduate) has delegated responsibility for the postgraduate affairs of the School and plays a central strategic role with regard to both existing and new research programmes. The Director of PGTL is a member of the College Postgraduate Teaching & Learning Committee. http://www.tcd.ie/teaching-learning/academic-governance/dir-of-pg-tl.php

DIRECTOR OF RESEARCH
The Director of Research has delegated responsibility for the development of research and innovation in the School. The Director plays a strategic role in promoting and enabling research in the School, working closely with the Head of School. http://www.tcd.ie/teaching-learning/academic-governance/dir-of-research.php

2.3 SCHOOL COMMITTEES AND STUDENT SUPPORT STRUCTURES

School Committee https://www.tcd.ie/Secretary/academic-governance/school-committee.php
This Committee currently includes one undergraduate and one postgraduate representative.

School Executive Committee
https://www.tcd.ie/Secretary/academic-governance/school-executive.php
This Committee currently includes one undergraduate and one postgraduate representative.

B.Sc. (Pharm.) Course Management Committee
This is a sub-committee of the School Executive and responsible for monitoring, reviewing and making recommendations on the development of the pharmacy degree course. This Committee currently includes at least one representative from Freshman Pharmacy and at least one representative from Sophister Pharmacy.

Student Representation
Undergraduate students in each of the four years of the course select a representative to relay the ideas and concerns of their year and to report to their year on developments within the School.
Student Forum
This is a student-led forum which, together with tutor representatives, discusses issues of student importance. It currently comprises the four student representatives - one from each year of the B.Sc. (Pharm.) programme.

College Tutors
The Tutorial Service is unique, confidential and available to all undergraduate students offering student support in all aspects of College life. You can find your tutor's name and contact number by logging in to https://my.tcd.ie

Asst. Prof. John Quigley jquigley@tcd.ie
Asst. Prof. John Walsh jjwalsh@tcd.ie
Assoc. Prof. Andrew Harkin aharkin@tcd.ie
Assoc. Prof. Lorraine O'Driscoll lodrisc@tcd.ie
Asst. Prof. Fabio Boylan fabio.boylan@tcd.ie
Asst. Prof. Astrid Sasse sassea@tcd.ie
Asst. Prof. Sheila Ryder sryder@tcd.ie

Disability Liaison Officer
Assoc. Prof. Helen Sheridan hsheridn@tcd.ie

Undergraduate - Year Coordinators
Junior Freshman year: Asst. Prof. John Walsh jjwalsh@tcd.ie
Senior Freshman year: Asst. Prof. John Quigley jquigley@tcd.ie
Junior Sophister year: Asst. Prof. Fabio Boylan fabio.boylan@tcd.ie
Senior Sophister year: Asst. Prof. Deirdre D'Arcy ddarcy@tcd.ie

Undergraduate Research Liaison Officer
Asst. Prof. Carlos Medina carlos.medina@tcd.ie

Erasmus/International contact
Asst. Prof. Carlos Medina carlos.medina@tcd.ie

Science without Borders contact
Asst. Prof. Fabio Boylan fabio.boylan@tcd.ie

Trinity Access Programmes (TAP) contact
Asst. Prof. John Walsh jjwalsh@tcd.ie

Transition year coordinator
Asst. Prof. Fabio Boylan fabio.boylan@tcd.ie

Student 2 Student (S2S)
From the moment you arrive in College right the way through to your end of year exams Student 2 Student (S2S) is here to make sure your first year is fun, engaging and a great foundation for the rest of your time in Trinity. You'll meet your two S2S mentors in Freshers' Week and they'll make sure you know other people in your course before your classes even start. They'll keep in regular touch with you throughout your first year and invite you to events on and off campus. They'll also give you useful information about your course and what to look out for. Mentors are students who have been through first year and know exactly what it feels like, so you never have to worry about asking them a question or talking to them about anything that's worrying you.

S2S also offers trained Peer Supporters if you want to talk confidentially to another student or just to meet a friendly face for coffee and a chat.

S2S is supported by the Senior Tutor's Office and the Student Counselling Service.

http://student2student.tcd.ie, E-mail: student2student@tcd.ie, Phone: 01 896 2438
SCHOOL NOTICE BOARDS
Notice boards for undergraduates are located in the School lobby and also at the entrance to the laboratories.

2.4 COLLEGE SUPPORT SERVICES

Student Counselling Service
Confidential, free to students, emergency appointments, online counselling, one to one counselling Groups, Workshops, Podcasts
3rd Floor, 7-9 South Leinster Street
Tel: 896 1407
student-counselling@tcd.ie
http://www.tcd.ie/Student_Counselling/

Student Learning Development
Study Skills, Exams, Presenting, Self Management, Writing
Drop-In Service, Workshops, 1:1 Appointments
3rd Floor, 7-9 South Leinster Street
Tel: 896 1407
student.learning@tcd.ie
http://www.tcd.ie/Student_Counselling/student-learning/

Chaplains
The Chaplains run a Bereavement Support Group for those who have experienced loss (please contact the Chaplains). The Chaplains will also help you make contact with other religious communities in Dublin. Free simple lunch on Tuesdays during term time between 12.30 and 14.00 h.
House 27 (Senior Tutor’s House)
Tel: Paddy Gleeson / Peter Sexton: 896 1260, Darren McCallig : 896 1402 ; Julian Hamilton : 896 1901
chaplaincy@tcd.ie
http://www.tcd.ie/Chaplaincy/

College Health Service
Appointments may be made in person or by telephone.
This service is free to most students
House 47 (beside the rugby pitch)
Tel: 896 1556
http://www.tcd.ie/collegehealth/

Disability Service
Room 2054, beside the Lecky Library, in the Arts Building
Tel: 896 3111
disab@tcd.ie
http://www.tcd.ie/disability/

Niteline
A confidential help-line for students run by students is available during term-time, by freephone between 9 pm and 2.30 am 7 nights a week at 1800 793 793.

skills4studycampus
is an online resource offering e-learning modules on:
Writing skills; referencing and understanding plagiarism; reading and notemaking and critical thinking skills. It comprises a wide variety of interactive activities which you complete before taking a module assessment to see how much you learned.
Skills4studycampus is available 24 hours a day, 7 days a week. Log in via http://www.tcd.ie/local
2.5 THE SCHOOL OF PHARMACY & PHARMACEUTICAL SCIENCES ACADEMIC STAFF

Head of School

Professor in Pharmaceutics and Pharmaceutical Technology

Chair/Professor of Pharmacology

Assoc. Professor in Pharmacology
Neil Frankish, B.SC. (C.N.A.A.), M.A., PH.D.(STRATH.)

Asst. Professors in Pharmacology
Carlos Medina, M.B. (LA LAGUNA), PH.D. (A.U. BARCELONA)

Professor in Pharmaceutical Chemistry

Asst. Professors in Pharmaceutical Chemistry
Astrid Sasse, STAATSEXAMEN PHARMAZIE (BERLIN), DR. RER. NAT. (BERLIN), M.A., M.P.S.I.
John Gilmer, B.A., PH.D.

Assoc. Professor in Pharmaceutics and Pharmaceutical Technology
Carsten Ehrhardt, STAATSEXAMEN PHARMAZIE (HAMBURG), DR. RER. NAT. (SAARBRÜCKEN, GERMANY), F.T.C.D. (2013)

Asst. Professors in Pharmaceutics and Pharmaceutical Technology
Deidre O’arcy, M.PHARM. (R.GORDON), PH.D. DIP. CLIN.PHARM. (LIV.J.MOORES), M.P.S.I.
Lidia Tajber, M.PHARM. (MEDICAL UNIVERSITY OF SILESIA), PH.D., P.G.DIP. Q.I

Assoc. Professors in Practice of Pharmacy
Martin Henman, B.PHARM. (BRAD.), M.A., PH.D. (BRAD.), M.R.PHARM.S., M.P.S.I.
Cicely Roche, B.SC. (PHARM.), M.SC. (HEALTHCARE ETHICS & LAW), M.SC. (COMM PHARM), M.P.S.I. (PART-TIME)
Tamasine Grimes, B.SC. (PHARM.), M.SC (HOSP.PHARM.), P.G. DIP (HEALTH SERVICES MANAGEMENT), PH.D. (R.C.S.I), M.P.S.I. (PART-TIME)

Asst. Professor in Practice of Pharmacy
Sheila Ryder, B.SC. (PHARM.), M.SC. (BELFAST), M.P.S.I.

Teacher Practitioner (PART-TIME) Boots the Chemists
Karen Rossi, B.SC. (PHARM.), M.SC. (COMM. PHARM), M.P.S.I.

Adj. Asst. Professor in Practice of Pharmacy (Hospital Pharm.)
Evelyn Deasy, B.SC. (PHARM.), M.SC., M.P.S.I.

Assoc. Professor in Pharmacognosy

Asst. Professors in Pharmacognosy
John Walsh, B.A., PH.D.
Fabio Boylan, B.SC. (PHARM.) (UNIVERSITY OF RIO), PH.D. (UNIVERSITY OF RIO), M.A.

Adj. Asst. Professors in Pharmacognosy (PART-TIME)
Ingrid Hook, B.SC. (PHARM.) (MANC.), M.A., M.SC. (N.U.I.), M.R.PHARM.S.

Asst. Professor in Nanopharmaceutical Drug Discovery (Ussher)
Maria Jose Santos Martinez, M.B. (LA LAGUNA); M.D. (U.A. BARCELONA); PH.D. (T.C.D.)

Asst. Professor in Cancer, Biology and Therapeutics (Ussher)
David Finlay, B.A. (MOD), PH.D.

Asst. Professor in Applied and Translational Medicine (Ussher)
Sinead Smith, B.SC., PH.D.
2.6 ADMINISTRATIVE STAFF, EXECUTIVE OFFICERS AND TECHNICAL STAFF IN THE SCHOOL OF PHARMACY & PHARMACEUTICAL SCIENCES

SCHOOL ADMINISTRATOR
Dr. Cecilia McAllister mcallisc@tcd.ie Ext. 2938

SCHOOL OFFICE
Ms. Betty Daly edaly3@tcd.ie Ext. 2809

UNDERGRADUATE STUDENT ADMINISTRATION
Freshman Years (JF & SF)
Ms. Gillian O’Hanlon (Doyle) doylegi@tcd.ie Ext. 2350

Junior Sophister (JS)
Ms. Alison Finlay finlaya@tcd.ie Ext. 2811

Senior Sophister (SS)
Dr. Cecilia McAllister mcallisc@tcd.ie Ext. 2938

TECHNICAL STAFF
Mr. Ray Keaveny Chief Technical Officer rkeaveny@tcd.ie Ext. 2814
Ms. Therese Moloney Senior Technical Officer tmalony@tcd.ie Ext. 2824/2859
Ms. Rhona Prendergast Senior Technical Officer rprndgst@tcd.ie Ext. 2831/2855
Mr. Brian Talbot Senior Technical Officer talbotb@tcd.ie Ext.2859/2862
Mr. Joseph Reilly Senior Technical Officer jreilly@tcd.ie Ext. 2854/2856
Ms. Maureen Brunt Senior Lab Attendant bruntm@tcd.ie Ext. 2854/2856
Ms. Pauline McGlue Senior Lab Attendant mcgluep@tcd.ie Ext. 2833
Mr. Conan Murphy Senior Lab Attendant murphyc5@tcd.ie Ext. 2833
Ms. Irene Pelow Senior Lab Attendant pelowi@tcd.ie Ext. 2931
3 SAFETY WITHIN THE SCHOOL

3.1 General Information:

(i) Students are encouraged to bring any concerns re safety to the attention of both the School (see Safety Officers below) and the College Safety Officer, Mr. Tom Merriman, ext. 1914 (email: tom.merriman@tcd.ie).

(ii) All undergraduate students presenting in each year’s practical classes are advised by the Staff Supervisor about general safety issues such as fire hazards, smoking, eating, protective clothing, etc. and first aid facilities.

Health and Safety Manual: It is the obligation of every student to familiarise him/herself with the content of the safety manual.

SCHOOL SAFETY OFFICERS

Asst. Prof. M. Santos Biological Safety Officer santosmm@tcd.ie
Mr. R. Keaveny Chemical Safety Officer rkeaveny@tcd.ie
Assoc. Prof. A. Harkin Radiation Safety Officer aharkin@tcd.ie

The B.Sc. (Pharm.) course consists of lectures, laboratory classes, seminars, study visits, tutorials and some work experience. Laboratories by their nature require those working in them to be highly aware of the safety implications of that particular working environment.

The School wishes to establish and maintain a working environment in which the physical and mental well-being of staff and students is maintained at the highest levels practicable, and to provide a basis whereby problems of safety that arise in the working environment are solved in co-operation with staff and students and their representative organisations.

3.2 Staff and students are obliged to operate the ‘neighbour principle’.

This involves:

(i) Taking reasonable care for their own safety and health and that of others who may be affected by their acts or omissions while at work;
(ii) Co-operating with the College to such an extent as will enable the College to comply with the provisions of legislation and to meet its general duties on safety, welfare and health;
(iii) Not intentionally interfering with or misusing any means, appliance, equipment or other aid provided for securing the health, safety or welfare of the College community;
(iv) The use of any clothing, equipment or appliance required for the purpose of securing his/her health, safety and welfare at work;
(v) Reporting to the College management any defects in plant, equipment or procedures which are a danger to safety, health or welfare.

N.B. In the interests of safety, any student who fails to obey regulations or instructions from academic or technical staff, including demonstrators, may be excluded from the laboratory.

3.3 IMPORTANT SAFETY PRECAUTIONS – PLEASE READ CAREFULLY

(i) Smoking in College buildings is not allowed.
(ii) Hallways and passageways must be kept clear.
(iii) The location of fire exits should always be noted.
(iv) The location of fire extinguishers and their mode of use should be noted.
(v) The location of the first aid cabinet in each laboratory should be noted.
(vi) Dress code when working in the laboratories:
- White lab coats must always be worn and closed
- Safety spectacles must be worn when appropriate
- Appropriate masks may need to be worn when working with certain types of equipment and/or chemicals
- No open-toed shoes or sandals may be worn while in the laboratory.
- Long hair must be tied back and kept from covering the face.

(vii) Use of mobile/camera phones, iPods, radios and all other electronic equipment unrelated to practical work is prohibited while working in laboratories.

(viii) In the event of an accident taking place in the laboratory involving injury, no matter how trivial it may seem, the proper procedure is to:
- Call the ‘First-Aider’ associated with the laboratory to give first-aid if appropriate.
- Phone the College Health Service (Ext. 1556) for advice and refer for medical evaluation if he/she is ambulatory and not in distress or otherwise seriously injured.
- If the victim is known to be or likely to be seriously injured always call the College emergency number (1999) for help.

Never transport the victim to hospital in a private car or taxi.
- Report all accidents to a School of Pharmacy & Pharmaceutical Sciences Safety Officer.

(ix) Laboratory work must be performed where at all possible only during normal working hours. No laboratory work of any kind should be undertaken after hours unless at least two persons are present.

(x) Eating and drinking in the laboratories is strictly forbidden, this includes chewing gum.

(xi) Any suspicious persons / packages / floods etc. must be immediately reported to the College Emergency Number (1999) at Front Gate.

4 UNIVERSITY STUDY

The B.Sc. (Pharm.) course is accredited by the Pharmaceutical Society of Ireland and is also recognised for "free movement" purposes under the various European Union Directives on Pharmacy which lay down the subjects to be studied. The minimum number of study hours for a Pharmacy course form part of national and European accreditation criteria. There are two types of study hours set out in this booklet.

1. Supervised study which consists of the lecture and laboratory practical courses, tutorials, workshops, seminars, study visits and specified work experience. It can also include laboratory report preparation. School regulations require you to attend all scheduled classes and you may be refused permission to take your written examinations if your attendance is deemed non-satisfactory. (See University Calendar; Part 2, General regulations and information, Non-satisfactory attendance and course work, §25, http://www.tcd.ie/calendar/1415-2/part-2-undergraduate-courses-and-other-general-information/general-regulations-and-information/academic-progress/)

2. Guided study comprises directed but unsupervised study you must do outside the formal course. It can consist of suggested reading of text book references, published articles in scientific and medical journals, use of electronic data bases (e.g., Micromedex Healthcare Series), exercises in problem solving, reading and extension of your lecture notes, revision for term tests and annual examinations. The amount of guided study on average involves 2-3 hours per lecture and 1 hour for each hour of practical work. The hours specified are very much minimum hours of guided study expected of you over the four years of the course. Independent study, note-taking at lectures and the writing of laboratory reports etc., are an important way of developing your learning abilities and capacity for study. For pharmacists in particular, the ability to learn continuously is absolutely essential because of the necessity for continuing professional development as a practising pharmacist. If you are concerned about study technique at University level you should discuss this with your tutor and avail of the courses made available each year in College. It is vital that you learn how to use the library efficiently, particularly the electronic databases of relevance to Pharmacy and the Pharmaceutical Sciences.
Continuous assessment marks will be allocated based on attendance at practicals, performance and practical write-ups. Laboratory notebooks/manuals/reports must be presented for assessment by the date specified in the manual or by College staff.

IMPORTANT
Late submissions will not be assessed unless a valid reason is provided, and students will be deemed not to have satisfied the School’s examination requirements.

Academic Integrity and Plagiarism
There is a well-established academic convention that work performed and published by other people is acknowledged fully if it is being used in any written work submitted for assessment. This convention applies to all academic work (theses, research papers, text books etc.) but in your case it applies to all material used in assessments, lab books and written examinations. College takes breaches of its regulations on plagiarism very seriously and you must read the next section very carefully.

See University Calendar, Part 2, General regulations and information, §§82-90.

Plagiarism
82 Plagiarism is interpreted by the University as the act of presenting the work of others as one’s own work, without acknowledgement. Plagiarism is considered as academically fraudulent, and an offence against University discipline. The University considers plagiarism to be a major offence, and subject to the disciplinary procedures of the University.

83 Plagiarism can arise from deliberate actions and also through careless thinking and/or methodology. The offence lies not in the attitude or intention of the perpetrator, but in the action and in its consequences.

Plagiarism can arise from actions such as:
(a) copying another student’s work;
(b) enlisting another person or persons to complete an assignment on the student’s behalf;
(c) quoting directly, without acknowledgement, from books, articles or other sources, either in printed, recorded or electronic format;
(d) paraphrasing, without acknowledgement, the writings of other authors.

Examples (c) and (d) in particular can arise through careless thinking and/or methodology where students:
(i) fail to distinguish between their own ideas and those of others;
(ii) fail to take proper notes during preliminary research and therefore lose track of the sources from which the notes were drawn;
(iii) fail to distinguish between information which needs no acknowledgement because it is firmly in the public domain, and information which might be widely known, but which nevertheless requires some sort of acknowledgement;
(iv) come across a distinctive methodology or idea and fail to record its source.

All the above serve only as examples and are not exhaustive.

Students should submit work done in co-operation with other students only when it is done with the full knowledge and permission of the lecturer concerned. Without this, work submitted which is the product of collusion with other students may be considered to be plagiarism.

84 It is clearly understood that all members of the academic community use and build on the work of others. It is commonly accepted also, however, that we build on the work of others in an open and explicit manner, and with due acknowledgement. Many cases of plagiarism that arise could be avoided by following some simple guidelines:
(i) Any material used in a piece of work, of any form, that is not the original thought of the author should be fully referenced in the work and attributed to its source. The material should either be quoted directly or paraphrased. Either way, an explicit citation of the work referred to should be provided, in the text, in a footnote, or both. Not to do so is to commit plagiarism.
(ii) When taking notes from any source it is very important to record the precise words or ideas that are being used and their precise sources.

(iii) While the Internet often offers a wider range of possibilities for researching particular themes, it also requires particular attention to be paid to the distinction between one’s own work and the work of others. Particular care should be taken to keep track of the source of the electronic information obtained from the Internet or other electronic sources and ensure that it is explicitly and correctly acknowledged.

85 It is the responsibility of the author of any work to ensure that he/she does not commit plagiarism.

86 Students should ensure the integrity of their work by seeking advice from their lecturers, tutor or supervisor on avoiding plagiarism. All schools and departments should include, in their handbooks or other literature given to students, advice on the appropriate methodology for the kind of work that students will be expected to undertake.

87 If plagiarism as referred to in §82 above is suspected, in the first instance, the head of school, or designate, will write to the student, and the student’s tutor advising them of the concerns raised and inviting them to attend an informal meeting with the head of school, or designate, (The director of teaching and learning (undergraduate) may also attend the meeting as appropriate. As an alternative to their tutor, students may nominate a representative from the Students’ Union to accompany them to the meeting) and the lecturer concerned, in order to put their suspicions to the student and give the student the opportunity to respond. The student will be requested to respond in writing stating his/her agreement to attend such a meeting and confirming on which of the suggested dates and times it will be possible for the student to attend. If the student does not in this manner agree to attend such a meeting, the head of school, or designate, may refer the case directly to the Junior Dean, who will interview the student and may implement the procedures as referred to under Conduct and College Regulations §2.

88 If the head of school, or designate, forms the view that plagiarism has taken place, he/she must decide if the offence can be dealt with under the summary procedure set out below. In order for this summary procedure to be followed, all parties attending the informal meeting as noted in §87 above must state their agreement in writing to the head of school, or designate. If the facts of the case are in dispute, or if the head of school, or designate, feels that the penalties provided for under the summary procedure below are inappropriate given the circumstances of the case, he/she will refer the case directly to the Junior Dean, who will interview the student and may implement the procedures as referred to under Conduct and College Regulations §2.

89 If the offence can be dealt with under the summary procedure, the head of school, or designate, will recommend to the Senior Lecturer one of the following penalties:
(a) that the piece of work in question receives a reduced mark, or a mark of zero; or
(b) if satisfactory completion of the piece of work is deemed essential for the student to rise with his/her year or to proceed to the award of a degree, the student may be required to re-submit the work. However the student may not receive more than the minimum pass mark applicable to the piece of work on satisfactory re-submission.

90 Provided that the appropriate procedure has been followed and all parties in §87 above are in agreement with the proposed penalty, the Senior Lecturer may approve the penalty and notify the Junior Dean accordingly. The Junior Dean may nevertheless implement the procedures as referred to under Conduct and College Regulations §2.

5 B.SC. (PHARM.) DEGREE
As already noted, the Pharmaceutical Society of Ireland has specified that the purpose of undergraduate pharmacy education (the pharmacy degree programme) is to produce pharmacy graduates who have the knowledge, skills and attributes to safely participate in the National Pharmacy Internship Programme. Graduates should be prepared for patient-facing pharmacy practice, and their learning should be based upon and underpinned by appropriate and sufficient understanding of the principles and techniques of the pharmaceutical, biomedical and social sciences.

The provision of a common Pharmacy Syllabus allows individual graduates to choose for themselves the branch of pharmacy within which they wish to practice. Work experience in community and/or
hospital pharmacy practice is required to progress through the course. While the minimum requirements are stated in the Junior Sophister module, PH3006 and the Senior Sophister module, PH4006, we encourage students and graduates to obtain experience in as many different facets of pharmacy practice as possible since the differing experiences will enrich your subsequent professional career.

The B.Sc. (Pharm) is awarded on the successful completion of the four year undergraduate course. In order to become a registered pharmacist, a one-year in-service practical training programme (National Pharmacy Internship Programme) must be undertaken followed by the Professional Registration Examination. The National Pharmacy Internship Programme and the Professional Registration Examination are the responsibility of the Pharmaceutical Society of Ireland.

5.1 GARDA VETTING
Students undertaking the B.Sc. (Pharm.) are required to undergo vetting by the Garda Síochána or other relevant police force prior to commencing any work experience/pharmacy practice attachments. If, as a result of the outcome of these vetting procedures, a student is deemed unsuitable to attend clinical or other professional attachments/work experience, he/she may be required to withdraw from his/her programme of study.

5.2 FITNESS TO PRACTISE AND CODE OF CONDUCT
Students undertaking the B.Sc. (Pharm.) are expected to abide by the Code of Conduct for Pharmacy students which may be found on the School website (see https://pharmacy.tcd.ie/undergraduate/course-notices/coursenotes.php).

Students should also note the School’s procedures for dealing with Fitness to Practise issues (School website, see https://pharmacy.tcd.ie/undergraduate/course-notices/coursenotes.php) and the general College Regulations on Fitness to Practise, University Calendar, Part 2, General regulations and information, §28 http://www.tcd.ie/calendar/1415-2/part-2-undergraduate-courses-and-other-general-information/general-regulations-and-information/academic-progress/.

FURTHER INFORMATION FOR STUDENTS

The Pharmaceutical Society of Ireland: http://www.thepsi.ie/

School Office (Ground Floor)
Ms. Elizabeth Daly
Opening hours: Monday – Friday, 9.00 am – 5.00 pm.
Email: pharmacy@tcd.ie

5.3 LEARNING OUTCOMES FOR THE B.SC. (PHARM.) DEGREE PROGRAMME

The Pharmacy graduate should be able to:
(i) Commit to the ethos of professionalism and in particular should have a duty of care to and respect for the patient and a maturity to make professional decisions in the best interests of the patient;
(ii) Commit to life-long learning, in particular an awareness of the need for continuing education and professional development in the chosen field of pharmacy practice and
(iii) Adapt to developments in pharmacy and medicine.

The graduate will be able to:

• Demonstrate a foundation level of knowledge and understanding of the biological, physical and quantitative sciences underpinning Pharmacy;
• Explain how medicines are developed, manufactured, tested and brought to the market place;
• Demonstrate and describe how different types of medicinal preparations are formulated and be capable of preparing medicines extemporaneously, where appropriate;
• Supply medicines in accordance with pharmaceutical knowledge, legislation and codes of professional conduct and practice;
• Apply pharmacological, pharmaceutical and clinical knowledge to safely and effectively interpret and evaluate prescriptions and other orders for medicines;
• Fulfil their professional role as a pharmacist in advising and counselling patients, other healthcare professionals and others about medicines and their usage;
• Recognise common disease states and make appropriate responses to presented symptoms;
• Apply the principles of quality and quality assurance mechanisms in all aspects of scientific and professional activities;
• Employ research methodologies relevant to natural, clinical and social sciences;
• Apply an empirical approach to problem solving.

5.4 ATTENDANCE AND COURSE WORK
Students must attend for appropriate academic instruction in each term of each academic year and must satisfy the Head of the School as to their academic progress in each term in order to proceed with their year. The School may, from time to time, draw up regulations determining the required attendance of students at the various forms of instruction.

To rise with their class students must (a) attend satisfactorily the lectures, seminars, tutorials etc. given in the modules of their course each term as required by the University Council and the School of Pharmacy and Pharmaceutical Sciences regulations, (b) perform and complete all laboratory work to the satisfaction of the Head of the School, (c) attend and complete to a satisfactory standard all visits and teaching exercises at Practice sites and the prescribed periods of work experience and (d) pass the prescribed examinations (including practical tests and continuous assessment components).

Please also see ‘5.7 Examination Regulations of the School of Pharmacy and Pharmaceutical Sciences’, page 15.

Non-satisfactory attendance and course work
At the end of the teaching term, students who have not satisfied the School requirements with regard to attendance may be returned to the Senior Lecturer as non-satisfactory for that term. In accordance with the regulations laid down by the University Council, non-satisfactory students may be refused permission to take their annual examinations and may be required by the Senior Lecturer to repeat their year.

5.5 EXEMPTIONS – MATURE STUDENTS AND TRANSFER STUDENTS
Mature or transfer students may apply for exemptions from coursework and lectures. They do so by applying to the appropriate Module Co-ordinator, who may make a recommendation to the Director of Teaching & Learning (Undergraduate). Applications for exemption from one or more modules must be made to the Director of Teaching & Learning (Undergraduate) through the student's tutor in the first instance, within four calendar weeks of the start of Michaelmas Teaching Term. All students must present for written examinations in all modules. In the case of those who have been granted an exemption from practicals, their theory mark is returned.

N.B. PLEASE NOTE EXAMINATION REGULATIONS AND DETAILS ON COURSE MODULES MAY BE SUBJECT TO AMENDMENT.
5.6 COURSE MODULES

JUNIOR FRESHMAN

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG1001</td>
<td>Physiology</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>BY1101</td>
<td>Cell and Molecular Biology</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>BIPH01</td>
<td>Biochemistry</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>PH1001</td>
<td>Sources and Characteristics of Substances used in Medicines</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>PH1002</td>
<td>Physical Pharmacy I</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>PH1003</td>
<td>Discovery, Isolation, Separation & Analysis of Substances used in Medicines</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>PH1004</td>
<td>Introduction to Pharmaceutics & Formulation</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>PH1005</td>
<td>Mathematical Methods & Pharmaceutical Calculations</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>PH1006</td>
<td>Practice of Pharmacy I</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>PH1007</td>
<td>Orientation & Learning Skills and Integrated Pharmacy Studies (incl. Problem Based Learning)</td>
<td>5</td>
<td>43</td>
</tr>
</tbody>
</table>

SENIOR FRESHMAN

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2001</td>
<td>Pharmaceutical Properties of Materials Used in Medicines</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>PH2002</td>
<td>Physical Pharmacy II</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>PH2003</td>
<td>Isolation, Separation & Analysis of Substances Used in Medicines</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>PH2004</td>
<td>Formulation & Pharmaceutical Technology</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>PH2005</td>
<td>Microbiology and Biochemistry</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>PH2006</td>
<td>Practice of Pharmacy II</td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td>PH2007</td>
<td>Professional Development & Career Planning</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>PH2008</td>
<td>Pharmaceutical Biotechnology I</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>PH2009</td>
<td>General Principles of Pharmacology</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>PH2010</td>
<td>Molecular and Chemotherapy Pharmacology</td>
<td>5</td>
<td>67</td>
</tr>
</tbody>
</table>

JUNIOR SOPHISTER

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH3002</td>
<td>Medicinal & Pharmaceutical Chemistry III</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>PH3003</td>
<td>Natural Sources of Drugs and Medicines</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>PH3004</td>
<td>Sterile Products</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>PH3005</td>
<td>Pharmaceutical Data Analysis & Bioinformatics</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>PH3006</td>
<td>Practice of Pharmacy III</td>
<td>5</td>
<td>82</td>
</tr>
<tr>
<td>PH3008</td>
<td>Pharmaceutical Biotechnology II</td>
<td>5</td>
<td>86</td>
</tr>
<tr>
<td>PH3009</td>
<td>Endocrine & Reproductive Pharmacology and Veterinary Pharmacy</td>
<td>5</td>
<td>88</td>
</tr>
<tr>
<td>PH3010</td>
<td>Respiratory & Gastrointestinal Pharmacology</td>
<td>5</td>
<td>91</td>
</tr>
<tr>
<td>PH3011</td>
<td>Blood, Cardiovascular & Renal Pharmacology</td>
<td>5</td>
<td>93</td>
</tr>
</tbody>
</table>

SENIOR SOPHISTER

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH4002</td>
<td>Medicinal and Pharmaceutical Chemistry IV</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>PH4003</td>
<td>Ectoparasiticides Natural Remedies and Complementary Medicine</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>PH4004</td>
<td>Advanced Drug Delivery</td>
<td>5</td>
<td>102</td>
</tr>
<tr>
<td>PH4005</td>
<td>Pharmacokinetics, Pharmacodynamics, Biopharmaceutics & Drug Metabolism</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td>PH4006</td>
<td>Practice of Pharmacy IV-1</td>
<td>5</td>
<td>106</td>
</tr>
<tr>
<td>PH4007</td>
<td>Practice of Pharmacy IV-2 (including electives)</td>
<td>10</td>
<td>109</td>
</tr>
<tr>
<td>PH4008</td>
<td>Addiction Pharmacy & Integrated Pharmacy Skills</td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>PH4009</td>
<td>Neuropharmacology</td>
<td>5</td>
<td>114</td>
</tr>
<tr>
<td>PH4011</td>
<td>Malignant Disease, Immunopharmacology & Pharmacology of the Eye</td>
<td>5</td>
<td>116</td>
</tr>
<tr>
<td>PH4012</td>
<td>Research Project</td>
<td>10</td>
<td>118</td>
</tr>
</tbody>
</table>

Definition of the ECTS:

"The European Credit Transfer and Accumulation System (ECTS) is a student-centred system based on the student workload required to achieve the objectives of a programme of study. * Ref: ECTS Users' Guide (Feb 2005) EU Commission, DG for Education and Culture*."

ECTS equivalent for each year of the course is 60 credits.

https://www.tcd.ie/teaching-learning/academic-development/ects.php
5.7 EXAMINATION REGULATIONS IN THE SCHOOL OF PHARMACY & PHARMACEUTICAL SCIENCES

A General College Regulations shall apply as set out in the University Calendar, Part 2, Undergraduate Degrees and Diplomas in the chapter 'General regulations and information'

Particular attention is drawn to the following:

A1 ILLNESS AT EXAMINATIONS

33 There are two University examination sessions: annual and supplemental. (This generally applies to non-final or non-degree examinations. Specific regulations concerning the availability of supplemental examinations and assessments in final or degree years of professional courses may be found in their particular course entries) The dates of these examination sessions are given in the ALMANACK. Examinations should be confined to these two examination sessions. However, if and when approved by the University Council, certain courses, normally professional, are permitted to hold examinations outside of the standard academic year structure and, in particular, outside of the two University examination sessions. Furthermore, in individual cases, examinations outside these two sessions will only be permitted pursuant to §37. Students are, in the first instance, required to present for examination at the annual session for their class. Students who are unable to complete their examinations at the annual or supplemental session due to illness, disability, (Full details of examination procedures for students with disabilities can be found at https://www.tcd.ie/academicregistry/exams/student-guide/#withdisability) or other grave cause beyond their control may apply through their tutor to the Senior Lecturer for permission to repeat the year.

34 Where an examination has been completed, subsequent withdrawal is not permitted. Students who have successfully completed an examination and are qualified to rise with their year are not permitted to repeat the examination.

35 Students who consider that illness may prevent them from attending an examination (or any part thereof) should consult their medical advisor and request a medical certificate for an appropriate period. If a certificate is granted, it must be presented to the student’s tutor within three days of the beginning of the period of absence from the examination. The tutor must immediately forward the certificate to the Senior Lecturer. Medical certificates must state that the student is unfit to sit examinations. Medical certificates will not be accepted in explanation for poor performance.

(a) Where a student becomes ill prior to the commencement of the annual examination, they may seek permission through their tutor from the Senior Lecturer to withdraw and take the supplemental examination in that year.

(b) Where illness prevents a student from completing any part of the annual examination and they withdraw from the examination, permission may be given for a supplemental examination to be taken in that year.

(c) Where illness occurs during the writing of an examination paper, it should be reported immediately to the chief invigilator. The student will then be escorted to the College Health Centre. Every effort will be made to assist the student to complete the writing of the examination paper.

Students who consider that other grave cause beyond their control may prevent them from attending an examination (or any part thereof) should consult their tutor who should make representations immediately to the Senior Lecturer that permission be granted for absence from the examination. Regulations (a) and (b) also apply in the case of absence from annual examinations due to other grave cause beyond a student’s control.
Regulations (a) and (b) apply only to examinations which are non-final non-degree examinations. However, regulations (a) and (b) apply in all years of those professional courses which permit supplemental examinations in final or degree years.

A2 CONDUCT OF EXAMINATIONS
Candidates for examinations are forbidden to bring books, notes, mobile phones, tablets, laptops or media players with them into an examination hall, to copy from or exchange information with other candidates or in any way make use of information improperly obtained, see University Calendar, Part 2, General regulation and information, Conduct of Examinations, §§43-49, http://www.tcd.ie/calendar/1415-2/part-2-undergraduate-courses-and-other-general-information/general-regulations-and-information/academic-progress/. Such actions are regarded as serious offences (see University Calendar, Part 2, General regulation and information, Conduct and College regulations, §4, http://www.tcd.ie/calendar/1415-2/part-2-undergraduate-courses-and-other-general-information/general-regulations-and-information/conduct-and-college-regulations/ for which a student may be expelled from the University. Students must not leave the examination hall before the time specified for the examination has elapsed, except by leave of the invigilator. Examinations or other exercises which are part of continuous assessment are subject to the same rules as other College examinations. Where submitted work is part of a procedure of assessment, plagiarism is similarly regarded as a serious offence and is liable to similar penalties.

A3 USE OF CALCULATORS IN EXAMINATIONS
Electronic calculators are permitted in certain examinations provided that they are battery operated, pocket sized, silent in operation and are not capable of using previously recorded programmes. The College does not supply calculators. The operation of calculators is entirely the responsibility of the students. No allowance is made for errors or omissions arising from the malfunction of calculators or the misuse of calculators by students. Calculators may not be passed from one candidate to another during examinations.
It is essential that the stages of numerical work, including intermediate answers, be written clearly to demonstrate knowledge of the problems and their solutions.

A4 APPEALS
Students may appeal through their Tutors to the School of Pharmacy & Pharmaceutical Sciences Court of First Appeal in the first instance and thereafter to the Academic Appeals Committee, see University Calendar 2014-15, Part 2, General regulation and information, Academic Progress, §§33-35: http://www.tcd.ie/calendar/1415-2/part-2-undergraduate-courses-and-other-general-information/general-regulations-and-information/academic-progress/

A5 ACADEMIC PROGRESS
A student may not repeat any academic year more than once and may not repeat more than two academic years, except by special permission of the University Council.
To rise with their class students must:
(i) Attend satisfactorily the lectures given in the modules of their course in each term as required by the University Council and the School of Pharmacy & Pharmaceutical Sciences regulations;
(ii) Perform and complete all laboratory work including project work and dissertations to the satisfaction of the Head of the School or module coordinator concerned; and
(iii) Pass, in accordance with the School of Pharmacy & Pharmaceutical Sciences regulations, the prescribed examinations (including practical tests, continuous assessment components and work experience).
B JUNIOR FRESHMAN, SENIOR FRESHMAN AND JUNIOR SOPHISTER STUDENTS

To be successful at examinations, a student will normally be required to pass each module, totaling 60 ECTS. However, the Court of Examiners may allow compensation provided that the student has obtained (and is returned with) an overall average of at least Grade III and provided that the student has

(i) passed modules totaling 55 ECTS and achieve a minimum mark of 30 per cent in the failed module

or

(ii) passed modules totaling 50 ECTS and achieve a minimum mark of 35 per cent in the failed module or modules

Compensation will not be allowed where a student is returned as “qualified fail” (QF) in any module.

The following modules cannot be compensated:

JUNIOR FRESHMAN*
PH1001 Sources and Characteristics of Substances used in Medicines
PH1002 Physical Pharmacy I
PH1003 Discovery, Isolation, Separation & Analysis of Substances used in Medicines
PH1004 Introduction to Pharmaceutics & Formulation
PH1006 Practice of Pharmacy I
PH1007 Orientation & Learning Skills and Integrated Pharmacy Studies (incl. Problem Based Learning)

SENIOR FRESHMAN*
PH2001 Pharmaceutical Properties of Materials Used in Medicines
PH2002 Physical Pharmacy II
PH2003 Isolation, Separation & Analysis of Substances Used in Medicines
PH2004 Formulation & Pharmaceutical Technology
PH2005 Microbiology and Biochemistry
PH2006 Practice of Pharmacy II
PH2007 Professional Development & Career Planning
PH2008 Pharmaceutical Biotechnology I

JUNIOR SOPHISTER*
PH3002 Medicinal & Pharmaceutical Chemistry III
PH3004 Sterile Products
PH3006 Practice of Pharmacy III
PH3009 Endocrine & Reproductive Pharmacology and Veterinary Pharmacy
PH3010 Respiratory & Gastrointestinal Pharmacology
PH3011 Blood, Cardiovascular & Renal Pharmacology

* Modules not listed may still have compulsory components.

Students who fail to satisfy the examiners at the annual examination must present for a supplemental examination at the beginning of Michaelmas Term. There is no fee for the supplemental examination.

Students who are unsuccessful at the annual examination will normally be given credit for those modules in which they were successful, and will be examined in the supplemental examinations only in those modules in which they are unsuccessful.

Students who are unsuccessful at both an annual and supplemental examination and who have made a serious attempt or have a valid reason for their absence may repeat the year. Repetition requires full attendance at lectures and such other courses as may be prescribed by the Head of the School of Pharmacy & Pharmaceutical Sciences.

Students who have passed the Junior Sophister examination may have the ordinary degree of B.A. conferred if they do not choose to proceed to the Senior Sophister year or if they have failed the SS year. Except by permission of the University Council, on the recommendation of the court of
examiners, the ordinary degree of B.A. may be conferred only on candidates who have spent at least three years in the University.

Students may not repeat any academic year more than once within the degree programme and may not repeat more than two academic years within the degree programme, except by special permission of the University Council.

C
SENIOR SOPHISTER - B.SC. (PHARM.) DEGREE EXAMINATION

The B.Sc. (Pharm.) degree examination will be held in Trinity Term of the Senior Sophister year. However, the theory paper in PH4006 is taken between Michaelmas and Hilary Terms.

A student will normally be required to pass each module, totaling 60 ECTS. However, the Court of Examiners may allow compensation, provided that all modules have been taken in a single sitting and provided that the student has obtained (and is returned with) an overall average of at least Grade III and provided that the student has

(i) passed modules totaling 55 ECTS and achieve a minimum mark of 30 per cent in the failed module

or

(ii) passed modules totaling 50 ECTS and achieve a minimum mark of 35 per cent in the failed module or modules

Compensation will not be allowed where a student is returned as “qualified fail” (QF) in any module.

Compensation in Practice of Pharmacy is precluded by the accreditation criteria of the Pharmaceutical Society of Ireland.

The following modules cannot be compensated:

- PH4002 Medicinal and Pharmaceutical Chemistry IV
- PH4005 Pharmacokinetics, Pharmacodynamics, Biopharmaceutics & Drug Metabolism
- PH4006 Practice of Pharmacy IV-1
- PH4007 Practice of Pharmacy IV-2 (including electives)
- PH4008 Addiction Pharmacy & Integrated Pharmacy Skills

Modules not listed may still have compulsory components.

Students who are unsuccessful at the annual degree examination will normally be given credit for those modules in which they were successful, and if presenting for a supplemental examination, will be examined only in those modules in which they were unsuccessful.

In order to qualify for the award of the degree, students are required to pass the degree examination, and associated coursework and assessments, in their entirety within eighteen months from the date on which they first became eligible to present for the degree examination.

Students who are unsuccessful at both the annual and supplemental examinations must apply to the School of Pharmacy & Pharmaceutical Sciences Court of First Appeal in the first instance and thereafter to the Academic Appeals Committee for permission to repeat the year. Repetition requires full attendance at lectures and such other courses as may be prescribed by the Head of School.

VIVA VOCE EXAMINATIONS

Senior Sophister students may be asked to attend a Viva Voce examination. Accordingly, students must be available for such examinations when the External Examiners are visiting the School. Dates for Viva examinations are published as soon as they are known. However, students should note that Viva lists are unlikely to be available until a few days before the actual Viva.
D PHARMACY LAW, ETHICS AND PROFESSIONALISM
The Pharmaceutical Society of Ireland require, as part of the Interim Accreditation Standards for the
Level 8 Bachelor Degree (2012), that success in a formal examination of pharmacy law and a
summative assessment of ethics and professionalism in the final year shall be a condition for the
award of the degree.

E CALCULATION OF ANNUAL EXAMINATION & FINAL DEGREE GRADES
For Annual Grades - individual module weightings will be based on ECTS (e.g., a 10 ECTS module
would normally represent 1/6 or a 5 ECTS module would normally represent 1/12 of the annual
result).

The degree grades are as follows:
First Class Honours 70%+
Second Class Honours Division 1 60-69%
Second Class Honours Division 2 50-59%
Third Class Honours 40-49%

E1 INCOMING JF STUDENTS 2014-15:
Penalties: Marks for repeated continuous assessment components during term-time or late
submission of course work may incur penalties.

Supplemental Examination Session: In the Freshmen years, on passing the year in the
supplemental examination session, marks will not be capped and the end-of-year result will be
recorded as ‘pass at supplemental’ (JF and SF year only).
In the Sophister years where marks count towards the degree, marks for a supplemental
examination and/or repeated continuous assessment component(s) will be capped at the pass mark.

B.SC. (PHARM) DEGREE
In calculating the final degree mark the following proportions will be observed:
35% of the final mark will be awarded will be based on the overall mark in the JS year
65% of the final mark will be awarded will be based on the overall mark in the SS year

E2 CONTINUING SF, JS AND SS STUDENTS:
Penalties: Marks for repeated continuous assessment components during term-time or late
submission of course work may incur penalties.

Supplemental Examination Session: On passing the year in the supplemental examination
session, marks for a supplemental examination and/or repeated continuous assessment
component(s) will be capped at the pass mark, since all years count towards the degree.

B.SC. (PHARM) DEGREE
In calculating the final degree mark the following proportions will be observed:
50% of the final mark will be awarded on work examined in the SS year
25% of the final mark will be awarded on work examined in the JS year
15% of the final mark will be awarded on work examined in the SF year
10% of the final mark will be awarded on work examined in the JF year
5.10 FOUNDATION SCHOLARSHIP EXAMINATION

N.B. This examination will be held in January, before the commencement of Hilary Teaching Term. Candidates are examined in their course work up to the end of Michaelmas Term of the Senior Freshman year, together with such additional reading as may be required by the Head of the School of Pharmacy & Pharmaceutical Sciences.

The Scholarship Examination for the Pharmacy course consists of three examination papers. Papers 1 and 2 will identify students who can consistently demonstrate exceptional knowledge and understanding of key subjects of the Senior Freshmen curriculum. Paper 3 is designed for candidates to demonstrate a high level of skill in integrating knowledge across different subject areas on one common theme and to reflect and demonstrate rigorous and informed critical thought.

Paper 1 – Pharmaceutical Sciences 1
Topics will be drawn from the following modules: Pharmaceutical Properties of Materials used in Medicines (PH2001) and Isolation, Separation and Analysis of Substances used in Medicine (PH2003). 3 hour paper. Four questions to be answered from four.

Paper 2 – Pharmaceutical Sciences 2
Topics will be drawn from Formulation & Pharmaceutical Technology (PH2004), Practice of Pharmacy II (PH2006) and General Principles of Pharmacology (PH2009). 3 hour paper. Four questions to be answered from six, at least one question must be attempted from each of the Modules examined therein, namely PH2004, PH2006 and PH2009.

Paper 3 – Special Topic
Disease management based on a scenario/case: Interdisciplinary understanding and research 3 hour paper. Candidates will be given selected scientific papers at the beginning of the Michaelmas Term. Candidates will be asked questions relating to, for example;
• the disease state and its molecular basis
• the types of treatment used at present
• the nature of the API and excipients, its presentation and the forms of delivery in use
• the provision of care for patients with the condition
• future developments in understanding of the disease, potentially new types and forms of delivery, treatment and the challenges of care.

Recommendation for Scholarship: The board of examiners will evaluate results of all papers for all candidates. In order for students to be proposed for election to scholarship, they must obtain an overall average first class result (70% or higher) in the Scholarship examinations, with a mark of at least 70% in two of the examination papers and a mark of at least 65% in the third paper.
5.11 PRIZES

- **Gold Medal**: The Board of Trinity College may award Gold Medals to candidates who show exceptional merit at the degree examination.

- **Pfizer Healthcare Ltd. Junior Freshman Pharmacy Prize**: This prize is awarded for overall first place in the Junior Freshman Pharmacy Annual Examination.

- **Sanofi Prize**: This prize is awarded to the student who attains the highest overall combined mark in modules PH3003 and PH4003.

- **Pfizer Healthcare Ltd. Prize in Pharmacology**: This prize is awarded to the student who attains the highest overall combined mark in modules PH3009, PH3010, PH3011, PH4009 and PH4011.

- **Paul Higgins Memorial Medal/UNIPHAR Prize in Pharmaceutical Chemistry**: This prize is awarded to the student who attains the highest overall combined mark in modules PH3002 and PH4002.

- **LEO Pharma Prize in Pharmaceutics**: This prize is awarded to the student who attains the highest overall combined mark in modules PH4004 and PH4005.

- **MacNeil Practice of Pharmacy Prize**: This prize is awarded to the student who attains the highest overall combined mark in modules PH4006 and PH4007 (including electives)

- **Alumni Prize**: This prize is awarded for the best overall combined mark in the Junior Sophister year.

- **The Actavis Academy Senior Sophister Pharmacy Prize**: This prize is awarded to the student who obtains the highest overall mark in the B.Sc. (Pharm.) Degree.

Please note that it is not possible to predict the value of the prizes in advance as it may vary from year to year.
JUNIOR FRESHMAN (1st Year)

Module details may be subject to corrections/amendments.

- It is each student’s responsibility to be aware of dates, times, locations, etc. of lectures, tutorials, seminars and practical classes.

- Reports, continuous assessments and laboratory notebooks must be presented for assessment by the dates specified by the examiner.

- Reports, continuous assessments and laboratory notebooks submitted after the specified dates will not be assessed unless a valid reason is given, and students will be deemed not to have satisfied the School’s examination requirements.

GENERAL PRE-REQUISITE: Matriculation Requirements, and in Mathematics at Leaving Certificate an Ordinary Level grade C or Higher Level grade D or grade B at GCSE level, and in Chemistry at Leaving Certificate a Higher Level grade C as well as a Higher Level grade C in one of: Physics, Biology, Geology, Geography, Applied Mathematics and Agricultural Science.
AIMS: To provide a basic core knowledge of the normal function of the human body as a foundation for your future application of Physiology to therapeutic practice.

PRE-REQUISITES – In addition to Matriculation Requirements, students without Leaving Certificate Biology are expected to do some extra reading in areas such as cell structure and function and the basic functions of body organs. Please also refer to general pre-requisites stipulated on page 23.

LEARNING OUTCOMES: On successful completion of the module the student will be able to:

- Recognise the structural characteristics of the basic mammalian cell types.
- Describe the functional roles of these cell types and how they interact in the various organ systems studied during the course.
- Explain the mechanisms by which these different organ systems are controlled in the normal human body.
- Describe the functional interrelationships that normally exist between the organ systems during daily life.
- Explain pathophysiological examples in some of the main organ systems
- Recall typical normal values for those physiological variables commonly used in clinical practice.

COURSE OUTLINE

LECTURES

1. C&T1: Introduction. Tissue and organ composition
 Lecturer: AK
2. C&T2: Principles of cellular function
 Lecturer: AK
3. C&T3: Composition of the blood
 Lecturer: AK
 Lecturer: AK
5. C&T5: Systems of immunity and defence
 Lecturer: AK
6. C&T6: Membrane transport & membrane potential
 Lecturer: AK
7. N&S1: Organisation of the nervous system
 Lecturer: ML
8. N&S2: Electrical activity in nerve pathways
 Lecturer: ML
9. N&S3: Sensory Perception
 Lecturer: ML
10. N&S4: The Eye
 Lecturer: ML
11. N&S5: The Ear
 Lecturer: ML
12. CVS1: Introduction to cardiovascular physiology
 Lecturer: ME
13. MSC1: Skeletal muscle structure and contraction
 Lecturer: DU
14. MSC2: Mechanisms of force generation
 Lecturer: DU
15. CVS2: The heart and cardiac cycle
 Lecturer: ME
16. MSC3: Muscle fibre types and muscle receptors
 Lecturer: DU
17. MSC4: Smooth and cardiac muscle
 Lecturer: DU
18. CVS3: Regulation of cardiac output
 Lecturer: ME
19. CVS4: Haemodynamics
 Lecturer: ME
20. CVS5: Regulation of blood pressure
 Lecturer: ME
21. RESP1: Organisation of the respiratory system
 Lecturer: ME
22. RESP2: Mechanics of breathing
 Lecturer: ME
23. RESP3: Gas exchange
 Lecturer: ME
24. RESP4: Gas transport
 Lecturer: ME
25. RESP5: Regulation of breathing
 Lecturer: ME
26. RESP6: Swallowing/laryngeal function
 Lecturer: ME
27. D&M1: Organisation and motility of the digestive system
 Lecturer: SH
28. D&M2: Digestion and absorption of nutrients
 Lecturer: SH
29. D&M3: Regulation of digestive function
 Lecturer: SH
30. D&M4: Functions of the liver and gall bladder
 Lecturer: SH
31. D&M5: Regulation of metabolism
 Lecturer: SH
32. D&M6: Regulation of body temperature
 Lecturer: SH
33. REP1: Endocrine regulation of reproduction
 Lecturer: AW
34. REP2: Menstrual cycle
35. REP3: Pregnancy, labour and lactation
36. REN1: Organisation and function of the urinary system
37. REN2: Regulation of body salt and water
38. REN3: Regulation of body pH

DIRECTED READING
The standard text is Stanfield, C & Germann, W. Principles of Human Physiology 5th ed. (2012).

ASSESSMENT
Written paper: 3 hours 100% of marks
Section A: 10 short answer questions; Section B: approx. 43 MCQs

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>76</td>
<td>114</td>
<td>5</td>
</tr>
</tbody>
</table>

After marking and careful checking, examination results are scrutinised at a Departmental Examiners' Meeting. Students falling just below the Pass/Fail borderline will be called for a viva-voce examination with the External Examiner, who may decide to raise the mark to a pass (40%). Students with a mark just below compensation level (35%) may be offered a viva to see whether the mark may be raised to 35%. The viva voce examination will be in the April-May Annual examination period (exact date to be advised as soon as possible, but probably late May), so students should ensure that they are available. The times of individual vivas will be advertised on the Physiology Department noticeboard shortly after the examination and usually only a day or two before the viva-voce examination. It is the student’s responsibility to check the noticeboard during this period. Failure to present for a viva voce examination will result in no alteration to the result of the final examination. We will endeavour to circulate viva information by email, but the Physiology noticeboard is the official source of information on vivas. Students must bring their ID cards to viva-voce examinations.

Note. The notice of candidates for viva-voce examination will also indicate the ID numbers of students who have not passed and are not called to viva. All other students may assume that they have passed. Under no circumstances will Physiology staff discuss performance in the examination, or release any marks, before the School of Pharmacy and Pharmaceutical Sciences publishes the results.

NB This course is taken with students from Clinical Speech & Language Studies and Radiation Therapy.
AIMS: To provide students with a thorough foundation in all aspects of modern molecular and cellular biology in preparation for more applied professional and clinical studies.

PRE-REQUISITES: Please see the general pre-requisites which are stipulated on page 23.

LEARNING OUTCOMES:
On successful completion of the module the student will be able to:
- Describe the properties and functions of the major groups of biochemicals
- Give an account of the origin of life, from the abiotic world to multicellular organisms, including an account of endosymbiosis.
- Give an account of the structure and functions of the plasma membrane and the major organelles that occur in eukaryotic cells.
- Describe the major steps involved in how a complex animal is formed.
- Relate the morphological changes that occur to the molecular and cellular changes that underlie and drive embryo development.
- Describe the structure and properties of prokaryotic and eukaryotic microorganisms and the structure and replication of viruses.
- Describe the mechanisms of action of and resistance to antibiotics, how pathogens cause infection and host innate and induced immunity.
- Use general texts, reference books and a range of other resources to further develop knowledge of biological issues through continued independent learning.
- Carry out a range of laboratory exercises, demonstrating the development of practical scientific skills.

COURSE OUTLINE

LECTURES

MOLECULAR AND CELLULAR BASIS OF LIFE (Prof. Luke O'Neill)
1. The chemical context of life
2. Proteins - uniquely suited to life
3. A tour of the cell / The origin and evolution of life: from molecules to cells to multicellular organism
4. The nucleus: from DNA to mRNA / mRNA to protein: The endoplasmic reticulum and Golgi apparatus
5. Energy and the cell / From photons to protons and electrons to ATP
6. Lysosomes and peroxisomes
7. How cells communicate - signal transduction

PROTEINS (Asst. Prof. Sarah Doyle)
8-9. Proteins 1 & 2
10. Proteins and Disease
11. Enzymes
12. The Cell, the cell membrane and membrane proteins

GENETICS (Prof. Jane Farrar)
13. Genetics – An Overview
14. Patterns of Inheritance
15. Cell Division – Mitosis and Meiosis
16. Linkage and Recombination
18. The Connection between Genes, Proteins and Metabolism
19. Mutation and its Consequences
20. Quantitative Genetics
21. Gene Cloning Technology
22. Genetic Technologies – Multiple Applications
BIOLOGY OF MICROORGANISMS (Asst. Prof Alastair Fleming; Prof. Timothy Foster)
23. Introduction and Microbial Growth
24. Bacterial Cell Structure
25. Inhibition of Bacterial Growth with Antibiotics
26. Bacterial Pathogens
27. Structure of Viruses
28. Virus Replication
29. Immunology 1
30. Immunology 2

DEVELOPMENTAL BIOLOGY (Assoc. Prof. Paula Murphy)
31. Introduction and Overview
32. Model Organisms
33. Descriptive Embryology I – Germ Cell Formation / Gametogenesis and Fertilisation
34-35. Descriptive Embryology II/III – Cleavage, Gastrulation, Neurulation and Organogenesis
36. Descriptive Embryology IV – How to produce and embryo on dry land and how mammals develop
37. Cellular Differentiation and Regulation of Gene Expression
38. Morphogenesis I and Positional Information
39. Developmental Genetics: Finding the Genes that Regulate Development
40. Master Regulatory Genes: The Genes that Control Development
41. Morphogenesis II – Revisited
42. The Relevance of Developmental Biology Research

PRACTICAL CLASSES (28 HOURS) (Assoc. Prof. John Rochford)
1 Molecular Techniques: Pipetting and spectrophotometry
2 Molecular Techniques: Purification of glutathione S - transferase by affinity chromatography
3 Molecular Techniques: Electrophoresis of proteins
4 Molecular Techniques: Assaying glutathione S - transferase
5 Microscopy 1: Use and care of microscopes and examination of simple tissues and cells
6 Microscopy 2: Some features of tissues and cells
7 Genetics: Microscopic examination of chromosomes, continuous variation and examination of pedigrees
8 Microscopy 1: Basic bacteriological techniques, examination of bacteria and fungi, and demonstration of antibiotic resistance and susceptibility
9 Microbiology 2: Continuation of above

Tutorials: A series of informal, small-group tutorials is provided by post-graduate teaching assistants to support the lecture and practical programmes, and provide the students with advice and direction in relation to continued independent learning.

DIRECTED READING:
Other sources, for further information and general background reading, as directed by lecturers.

ASSESSMENTS:
Written Paper: XBY11011 Essay & short-answer paper (3 hours) 66.6 % of total marks
Answer two essay questions from six, and ten compulsory short–answer questions.

Practical Test: MCQ Test (45 min). 30 questions based on practicals. 22.2% of total marks
Answer all questions (no negative marking).

Continuous assessment of Practical work during the year. 11.1 % of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>28</td>
<td>10</td>
<td>80</td>
<td>-</td>
<td>120</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>
BIOCHEMISTRY
Year 1 (Junior Freshman) Course code: BIPH01

Staff of the School of Biochemistry & Immunology: Asst. Prof. K. Mok (KM), Assoc. Prof. R. Porter (RP), Asst. Prof. J. Murray (JM), Assoc. Prof. P. Voorheis (PV).

Coordinator: Asst. Prof. David Finlay (DF)

AIMS: To provide current basic biochemical concepts of cell function, and describe, by way of example, the importance of several protein and cellular functions.

PRE-REQUISITES:
Please see the general pre-requisites which are stipulated on page 23.

LEARNING OUTCOMES: On successful completion of the module the student will be able to:
• Describe the components of the cell;
• Detail how protein structure leads to protein function;
• Describe how cells grow and divide;
• Discuss how cells extract and transduce energy;
• Describe the basics of control of cell functions;

COURSE OUTLINE: (Taken with JF Medicine/SF Radiation Therapy)

<table>
<thead>
<tr>
<th>LECTURES</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>DF</td>
</tr>
<tr>
<td>2-6 Protein structure and function</td>
<td>KM</td>
</tr>
<tr>
<td>7-10 Enzymology</td>
<td>JM</td>
</tr>
<tr>
<td>11-12 Membranes and transporters</td>
<td>RP</td>
</tr>
<tr>
<td>13-16 Intermediary metabolism (carbohydrates)</td>
<td>RP</td>
</tr>
<tr>
<td>17-20 Cell division and cell cycle</td>
<td>PV</td>
</tr>
<tr>
<td>21-22 Bioenergetics</td>
<td>RP</td>
</tr>
</tbody>
</table>

BIOINFORMATICS EXERCISE (Computer-Aided-Learning) 5 hrs
Coordinator: Dr. Glynis Robinson (GR)

ASSESSMENT

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple choice questions with negative marking</td>
<td>75% of total marks</td>
</tr>
<tr>
<td>Bioinformatics exercise</td>
<td>25% of total marks</td>
</tr>
</tbody>
</table>

DIRECTED READING

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>CAL</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>5</td>
<td>-</td>
<td>27</td>
<td>-</td>
<td>66</td>
<td>93</td>
<td>5</td>
</tr>
</tbody>
</table>
SOURCES AND CHARACTERISTICS OF SUBSTANCES USED IN MEDICINES
Year 1 (Junior Freshman)
Course Code: PH1001

Staff of the School of Pharmacy and Pharmaceutical Sciences: Asst. Prof. J.J. Walsh (JJW), Prof. M.J. Meegan (MJM), Asst. Prof. J.M. Quigley (JMQ), Dr. C. O’Donohoe (CO’D)

Coordinator: Prof. M.J. Meegan

AIMS: To provide the pharmacy student with an appropriate foundation course in Chemistry leading to an understanding of the chemical properties of substances used in human and veterinary medicines.

PRE-REQUISITES: Please see the general pre-requisites which are stipulated on page 23.

LEARNING OUTCOMES: On successful completion of the module the student will be able to:

- Describe the structure and nomenclature of simple chemical compounds of relevance in pharmacy
- Explain the influence of atomic structure, stereochemistry and molecular shape on drug design and activity
- Explain and illustrate the mechanisms for simple organic and bioorganic reactions of specific relevance to the synthesis of drug molecules
- Discuss the nature of functional groups and chemical reactivity in drug molecules
- Perform standard synthetic laboratory procedures
- Compile a short pharmaceutical chemistry profile of a drug molecule

COURSE OUTLINE: The course comprises four sections which are designed to provide the student with a broad understanding of the underlying principles of organic, bioinorganic and pharmaceutical chemistry which are required by Pharmacy students. It will place appropriate emphasis on the relationship of molecular structure to drug activity and will provide an introduction to the basic reaction mechanisms important to drug design.

PH1001A: Structure and bonding in simple chemical compounds of relevance to pharmacy
(8 Lectures): (JMQ)
1-3 Introduction to structure and bonding in organic compounds; ionic and covalent compounds; ionic bonding; covalent bonding; multiple bonds; nomenclature of simple organic molecules
4-5 Introduction to hybridization and stereochemistry; shape and polarity of covalent molecules
6 Non-bonding interactions between molecules;
7 Covalent bonding and chemical reactivity
8 Review of structure and bonding in organic compounds

PH1001B: Nature of functional groups and chemical reactivity in drug molecules
(17 Lectures): (JJW)
9-10 Functional groups in drug molecules, mechanisms for simple organic and bioorganic reactions of relevance to drug molecules; reaction pathways; writing equations for chemical reactions
11-12 Addition reactions to alkenes and carbonyls, nucleophilic aliphatic substitution
13-15 Elimination reactions from alkyl halides together with electrophilic aromatic substitution reactions
16-23 Chemical properties of important functional groups in drug molecules of use in predicting drug properties and chemical reactivity
24 Structures and properties of bioorganic materials (proteins, carbohydrates and lipids)
25 Review of introductory chemistry of organic compounds
PH1001C: Practical Laboratory skills: (6 Practical laboratory classes) (MJM, CO’D)
The practical laboratory course is designed to introduce the students to standard synthetic laboratory procedures and provide the basic practical skills required for Good Laboratory Practice with the objective to produce accurate and reproducible results and to develop the skills required in the synthesis and purification of drugs.

1. Technique of crystallization: Purification of acetonilide
2. Paracetamol synthesis and characterisation
3. Esterification of benzoic acid to methylbenzoate
4. Aldol condensation reaction
5. Hydrolysis of esters
6. Aspirin synthesis and characterization

PH1001D: Compilation of the pharmaceutical chemistry profile of a given drug molecule (Written Assignment) (MJM)
Students will be required to compile and submit a report (electronic format and hard copy) which will summarise the following information about a specific drug in an independent learning exercise:

(i) Systematic name and chemical structural features
(ii) Pharmaceutical use and pharmacological action
(iii) Chemical synthesis with relevant mechanistic detail
(iv) Metabolism
(v) Physical and Chemical properties
(vi) Pharmacopoeial assay method
(vii) List of references.

DIRECTED READING/Recommended textbook

ASSESSMENT
Written Theory Paper: 2 hours; 2 Sections, all questions are compulsory;
Section 1: MCQ; (40% of total marks)
Section 2: 5 short questions (30% of total marks)
Written assignment
Continuous practical assessment (15%) and test (5%) 20% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td>5</td>
<td>48</td>
<td>9</td>
<td>50</td>
<td>107</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component), but who obtain a Class III or better in the written annual examination will be returned as a qualified fail (QF) and will be required to resubmit in the practical component.
AIMS: To explain physico-chemical aspects of substances used in pharmacy and medicine.

PRE-REQUISITES:
Please see the general pre-requisites which are stipulated on page 23.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe the phases of matter with particular reference to pharmaceutical systems
- Discuss the importance of physicochemical parameters in relation to drug absorption and distribution
- Explain the theoretical basis of the stability of pharmaceutical agents in solution
- Describe the concept and theory of surface and interfacial phenomena as applicable to pharmaceutical systems
- Demonstrate a competence in related practical laboratory skills.

COURSE OUTLINE

LECTURES
1. Basic principles of Physical Pharmacy – phases of matter, phase rule/diagrams JQ
2. Basic principles of Physical Pharmacy – real gases JQ
3-4. Basic principles of Physical Pharmacy – properties of solids and liquids JQ
5-6. Introduction to solubility and its measurement LT
7. Solid state properties influencing solubility LT
8. Enhancing solubility by ionisation and salt formation LT
9. Enhancing solubility – co-solvation LT
16. Thermodynamics of Pharmaceutical Systems JQ
17-19. Ionisation, pKa, Partitioning JQ
20-21. Drug Absorption and Distribution JQ
22-23. Interfaces and surfaces: definition & measurement of their tension, surface and interfacial free energy; contact angles & the wetting of solids AMH
24. Definition, theory and factors affecting adsorption, effect of interfaces, Gibbs adsorption equation AMH
25-26. Adsorption isotherms, pharmaceutical applications of adsorption AMH
27. Surface films, film balance studies and uses in Pharmacy; surfactant uses. AMH

PRACTICAL CLASSES (2 hours each)
1. Solubility relationships of drugs and their metabolites
2. Dependence of reaction rate on concentration and temperature for an oxidation reaction
3. Determination of the critical micelle concentration of sodium lauryl sulphate
4. Determination of lipophilicity constants of sulphonamide substituents

DIRECTED READING
ASSESSMENT
Written paper: 2 hours
All 4 questions to be answered
Practical: Continuous Assessment

Weighting
85% of total marks
15% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>8</td>
<td>-</td>
<td>35</td>
<td>8</td>
<td>54</td>
<td>97</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component), but who obtain a Class III or better in the written section will be returned as a qualified fail (QF) and will be required to resubmit in the practical component.
DISCOVERY, ISOLATION, SEPARATION AND ANALYSIS OF SUBSTANCES USED IN MEDICINES

Year 1 (Junior Freshman) Course Code: PH1003

Staff of the School of Pharmacy & Pharmaceutical Sciences: Prof. M.J. Meegan (MM), Asst. Prof. John J Walsh (JW), Asst. Prof. A. Sasse (AS), Asst. Prof. F. Boylan (FB), Asst. Prof. J. Quigley (JQ), Asst. Prof. J.F. Gilmer (JG), Dr. C. O’Donohoe (COD)

Co-ordinator: Asst. Professor John F. Gilmer

PRE-REQUISITES:
Please see the general pre-requisites which are stipulated on page 23.

COURSE OUTLINE

This module consists of two units PH1003A and PH1003B:

PH1003A: PHARMACEUTICAL, ANALYTICAL AND PURIFICATION METHODS

AIMS: To introduce the concepts of quality, together with appropriate regulatory frameworks and guidance, and the application of analytical techniques to pharmaceutical materials. (The unit is preparatory for module PH2003).

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe the purpose and scope of pharmaceutical analysis
- Define identity, potency and purity
- Describe the structure and purpose of a pharmacopoeial monograph
- Interpret and explain basic spectroscopic data
- Interpret simple chromatographic data
- Determine system suitability parameters
- Conduct pharmacopoeial chromatographic assays

LECTURES

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope of pharmaceutical analysis, Pharmaceutical materials, and context</td>
<td>AS</td>
</tr>
<tr>
<td>2</td>
<td>The concepts of identity, potency, purity, pharmacopoeial monographs</td>
<td>AS</td>
</tr>
<tr>
<td>3-4</td>
<td>Assay design, units used in pharmaceutical analysis, uniformity of content analysis</td>
<td>JQ</td>
</tr>
<tr>
<td>5-6</td>
<td>Introduction to atomic spectroscopy (AES, AAS)</td>
<td>AS</td>
</tr>
<tr>
<td>7-8</td>
<td>Introduction to molecular spectroscopy (UV-Vis)</td>
<td>AS</td>
</tr>
<tr>
<td>9-11</td>
<td>Introduction to separation science and chromatography (TLC)</td>
<td>JW</td>
</tr>
<tr>
<td>12-13</td>
<td>Pharmaceutical/pharmacopoeial applications of TLC</td>
<td>FB</td>
</tr>
<tr>
<td>14-16</td>
<td>Introduction to column and gas chromatography (GC)</td>
<td>JW</td>
</tr>
<tr>
<td>17-18</td>
<td>Pharmaceutical/pharmacopoeial applications of GC</td>
<td>FB</td>
</tr>
<tr>
<td>19-20</td>
<td>Theory & methodology of HPLC</td>
<td>JW</td>
</tr>
<tr>
<td>21</td>
<td>Pharmaceutical/pharmacopoeial applications of HPLC</td>
<td>FB</td>
</tr>
</tbody>
</table>

PH1003B: INTRODUCTION TO DRUG DISCOVERY and MEDICINAL CHEMISTRY

AIMS: To explain how from the molecular structure of drugs, their properties and chemical incompatibilities can be predicted. This material is preparatory for modules in medicinal chemistry in the Sophister years.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe the basic sources of drugs, where they come from, how they are developed
- Explain what a pharmacophore is
- Explain how functional groups from organic chemistry impart properties to drug substances
- Classify common functional groups as polar or lipophilic
- Define and explain what a prodrug is and be able to give examples
- Summarise the properties of main group elements
- Identify the oxides of carbon and nitrogen relevant to pharmacy and medicine
- Describe co-ordination bonding and its geometries
- Describe heavy metal toxicity
LECTURES

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>The drug discovery process</td>
<td>MM</td>
</tr>
<tr>
<td>3-4</td>
<td>The natural world as a source of drugs</td>
<td>FB</td>
</tr>
<tr>
<td>5</td>
<td>Classification of drugs by mechanism, chemical class, physiological effects</td>
<td>MM</td>
</tr>
<tr>
<td>6-8</td>
<td>The concept of the pharmacophore; drug receptor interactions</td>
<td>JQ</td>
</tr>
<tr>
<td>9-11</td>
<td>The relationship between structure, metabolism and disposition</td>
<td>MM</td>
</tr>
<tr>
<td>12-14</td>
<td>Prodrugs</td>
<td>JG</td>
</tr>
<tr>
<td>15</td>
<td>Survey of Group Metals relevant to medicines</td>
<td>COD</td>
</tr>
<tr>
<td>16-18</td>
<td>Bonding in transition metal complexes, TMs in living organisms</td>
<td>COD</td>
</tr>
<tr>
<td>19</td>
<td>Heavy metal toxicity - cadmium, lead, mercury</td>
<td>COD</td>
</tr>
</tbody>
</table>

PRACTICAL CLASSES (3 hours each)

1. Determination of boric acid in eye lotion
2. Aspirin determination
3. Determination of calcium carbonate in paediatric chalk mixture and sodium carbonate in capsules
4. Introduction to Thin Layer Chromatography
5. Introduction to Gas Chromatography
6. Introduction to High Performance Liquid Chromatography

DIRECTED READING

ICHQ6A, Preamble and Scope

European Pharmacopoiea, General Notices

General Chemistry-Atoms first, McMurry-Fay, 2nd Edition 2012

Inorganic Chemistry in Biology, Wilkins PC & Wilkins RG, Oxford Chemistry Primers

ASSESSMENT

Written theory paper: 3 hours. Six questions to be answered from 7. Question 1 is compulsory. It carries double weighting.

Continuous assessment of Practical reports.

Weighting:

<table>
<thead>
<tr>
<th>Written paper</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous assessment</td>
<td>20%</td>
</tr>
</tbody>
</table>

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>18</td>
<td>100</td>
<td>178</td>
<td>10</td>
</tr>
</tbody>
</table>

N.B.: Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for the examination is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students are required to make a reasonable attempt at the compulsory question 1 in the written examination. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component) of the annual examination, but who obtain a Class III or better in the written section will be returned as a qualified fail (QF) and will be required to resubmit in the practical component.
INTRODUCTION TO PHARMACEUTICS AND FORMULATION
Year 1 (Junior Freshman) Course Code: PH1004

Staff of School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof. C. Ehrhardt (CE), Prof. A. M. Healy (AMH)
External Staff: Ms. K. Gilligan (KG), Mr. T. Kelly (TK)

Coordinator: Assoc. Professor Carsten Ehrhardt

AIMS: To provide an introductory course in Pharmaceutics, so that students may understand the importance and relevance of the subject area to their studies for a Degree in Pharmacy and in subsequent practice, and to be better able to participate in and benefit from work experience in community or another branch of Pharmacy.

PRE-REQUISITES: Please see the general pre-requisites which are stipulated on page 23.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Articulate the importance of Pharmaceutics for their studies in Pharmacy and subsequent practice
- Select and use appropriate common reference textbooks in hard copy and electronic format and describe the content thereof
- Recall the basic principles of formulation, with particular reference to simple liquid preparations such as solutions and suspensions, topical products such as gels and pastes and solid dosage forms such as capsules and suppositories
- Prepare simple extemporaneous preparations such as solutions, suspensions, gels, pastes, capsules and suppositories, and show competency in performing common pharmaceutical calculations of relevance in pharmaceutical formulation and compounding
- Discriminate between pharmaceutical grades of water
- Appreciate the importance of proper packaging and labelling of medicines

COURSE OUTLINE:

LECTURES
1 Introduction to Pharmaceutics CE
2 Introduction to essential reference books CE
3 Discussion of reference books, including Pharmacopoeia and Martindale CE
4-6 Pharmaceutical calculations relating to pharmaceutical formulation & compounding CE
7 Introduction to basic principles of formulation AMH
8-9 Water – potable and purified AMH
10-11 Design and preparation of solutions for oral administration AMH
12-13 Design and preparation of suspensions AMH
14-16 Hard capsules, formulation, production and quality control CE
17 Soft capsules, formulation, production and quality control CE
18-20 Rectal dosage forms, suppository formulation, production and quality control CE
21-22 Introduction to hydrogels, formulation and production CE
23-24 Packaging of medicines KG/TK

PRACTICAL CLASSES
1 Introduction to extemporaneous compounding and dispensing (2 h)
2 Pharmaceutical solutions 1 (2 h)
3 Pharmaceutical solutions 2 (3 h)
4 Pharmaceutical suspensions (3 h)
5 Solid dosage forms - capsules (3 h)
6 Solid dosage forms - suppositories and pessaries (3 h)
7 Topical semisolid products – gels and pastes (3 h)
8 Practice-based formulation exercises (3 h)
9 Practical examination preparation (3 h)
10 Repeat and revision (3 h)
TUTORIAL
Pharmaceutical formulation and calculation (AMH/CE).

DIRECTED READING
European Pharmacopoeia
British Pharmacopoeia
Martindale

ASSESSMENT
Written theory paper: 2 hours; MCQ and short answer questions 50% of total marks
Practical examination: 2.5 hours; 3 questions (no choice) 50% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>28</td>
<td>1</td>
<td>53</td>
<td>28</td>
<td>39</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>

Please note that pharmaceutical calculations related to this module will also be tested as part of the Pharmaceutical Calculations Tests in PH1005.

NB. Students are expected to satisfy the examiners in both written and practical examination components. The pass mark for the module is 40%. Students who obtain an overall mark of less than 40% will be required to sit the Supplemental examinations. Students who fail to satisfy the written requirement (i.e., less than 40%) in the annual examination, but who obtain a Class II or better in the practical examination will receive a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e., less than 50% in the practical examination) of the annual examination, but who obtain a Class III or better in the written section will receive a qualified fail (QF) and will be required to supplement in the practical examination only.
MATHEMATICAL METHODS & PHARMACEUTICAL CALCULATIONS
Year 1 (Junior Freshman) Course Code: PH1005

Staff of School of Pharmacy & Pharmaceutical Sciences: Asst. Prof. J. Quigley (JQ), Assoc. Prof. C. Ehrhardt (CE), Asst. Prof. A. Sasse (AS), Asst. Prof. S. Ryder (SR), Asst. Prof. L. Tajber (LT)
External Staff/School of Mathematics: Dr. Joe Hogan (JH)

Coordinator: Asst. Prof. John Quigley (JQ)

AIMS: To explain basic techniques in Applied Mathematics and Introductory Statistics and calculations of relevance to Pharmacy.

PRE-REQUISITES: Matriculation Requirements and in Mathematics at Leaving Certificate an Ordinary Level grade C or Higher Level grade D or grade B at GCSE level also please refer to the general pre-requisites stipulated on page 23.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Use Differential and Integral Calculus
- Explain the fundamental theory of statistical analysis
- Develop systems of linear equations
- Perform calculations relevant to Pharmaceutical Practice
- Determine the derivation of relevant kinetic data as applicable to pharmaceutical systems

COURSE OUTLINE:

PH1005A: MATHEMATICAL METHODS given by staff of the School of Mathematics:
24 Lectures / (JH)
- Differential and Integral calculus (linear, exponential, logarithmic and trigonometric relationships)
- Differential equations (1st & 2nd order)
- Algebra; Systems of linear equations

PH1005B: INTRODUCTORY STATISTICS & PHARMACEUTICAL CALCULATIONS
14 Lectures (JQ)
- Random & Discrete variables; Population Parameters & Pharmaceutical Statistics
- Probability Distributions (Poisson & Binomial)
- The Normal (Gaussian) Distribution; Properties & Applications; Cumulative Frequency Curve (Applications & Calculations)
- Derivation of the Rate Laws
- Prescription Compounding and Formulation Calculations; Dilution, Concentration & Alligation; Isotonic & Electrolyte Solutions
- Bioavailability & Bioequivalence; Drugs in different forms; Reconstitution for Oral and Parenteral use
- Isotonicity

6 Lectures (AS, SR, LT)
- Pharmaceutical Calculations

Online Exercises (Blackboard Learn): 6 hours
- Use of Excel; Data Presentation and Analysis; Plotting; Error Estimation;
- Statistical Analysis of repeated measurements; Uniformity of Content & Weight

DIRECTED READING
ASSESSMENT

Written theory paper: 2 hours; 2 Sections, all questions to be answered
Section A (PH1005A Maths Methods): 2 questions; 40% of written paper
Section B (PH1005B Statistics & Calculations): 3 questions 60% of written paper

Continuous Assessment:
* Two term tests 4%
 Exercise 4%

*Students will be required to attain a mark of at least an average mark of 70% in these Pharmaceutical calculations tests (comprising 10 questions each). Otherwise, they will be required to present for a further examination (pass mark 70%) prior to the Annual Examination session (comprising 20 questions). The use of calculators will be disallowed. No compensation is allowed in this element of the module assessment.
Facility with simple pharmaceutical calculations, with a mark of a minimum of 70% in Pharmaceutical Calculations Test(s), is a pre-requisite for entry into the Senior Freshman year.

Please note that relevant material from PH1004 will also be assessed in the Pharmaceutical Calculations Tests.

OVERALL WEIGHTING:

| Written Paper | 92% |
| Continuous Assessment | 8% |

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Total contact</th>
<th>Online Exercise & Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>44</td>
<td>6</td>
<td>70</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>
PRACTICE OF PHARMACY I
Year 1 (Junior Freshman) Course Code: PH1006

Staff of the School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof. M. Henman (MH), Asst. Prof. S. Ryder (SR), Assoc. Prof. C. Roche (CR), Assoc. Prof. T. Grimes (TG), Asst. Prof. F. Boylan (FB)
Teacher-practitioner: Ms. K. Rossi (KR)
External staff: Librarian, St John's Ambulance Service, Faculty of Health Sciences

Coordinator: Asst. Professor Sheila Ryder

AIMS: To introduce students to all aspects of pharmacy practice, including the roles and responsibilities of pharmacists, the institutions of pharmacy and the organisation of the health service, the structure and operation of community and hospital practices, the manufacture and supply of medicines, the law relating to medicines, medicine supply schemes and prescription dispensing, communication skills and alternative systems of medicine.

PRE-REQUISITES: See general pre-requisites for Junior Freshman year (page 23). Exceptions may be made in individual cases for students who have transferred from a pharmacy degree programme in another university, including one-year international students.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Define pharmaceutical care, identify the characteristics of a profession, outline the development of the profession of pharmacy and explain its professional status.
- Explain the differences between drugs, medicinal substances and medicinal products.
- Describe the drug use process, the characteristics of community and hospital pharmacy practice in Ireland, typical care paths in these settings, the healthcare professionals involved and the organisation of the health services.
- Describe the sequence of events in drug development, production and marketing, identify the regulatory bodies that are relevant to pharmacy, pharmacists and pharmaceuticals, and describe the regulation of product authorisation, drug distribution and supply in Ireland.
- Critically discuss case studies in the light of legislation and professional codes.
- Discriminate between action options open to a pharmacist when faced with professional dilemmas, justify preferred options with respect to professional responsibilities and consider principism as a framework for professional decision-making.
- Identify relevant medicine supply schemes when presented with a prescription, provide advice to a patient or prescriber on how these schemes operate, and dispense mock prescriptions or respond to patients' needs in a legal, safe and appropriate manner using suitable information resources.
- Describe the communication process and the structuring of explanations.
- Discuss key disease processes, signs and symptoms, dose-response relationships, pharmacodynamics, pharmacokinetics and toxicology.
- Explain the concepts of efficacy, side effects and therapeutic index.
- Describe the principal classes of cellular and molecular targets for drug action.
- Discuss the pharmacology and toxicology of paracetamol.
- Systematically collect, interpret and apply knowledge about patients, their conditions and their medicines, in order to provide and justify treatment recommendations and patient counselling, in a diverse range of patient case studies.
- Demonstrate the ability to use scientific and pharmacy databases, and the principles of academic writing, by presenting a structured dissertation on an assigned topic.

COURSE OUTLINE:
Note: Due to timetabling constraints, the sequence of classes may differ from that below.

LECTURES (32 hours)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, pharmacy in Ireland and medicines in Irish society</td>
<td>MH</td>
</tr>
<tr>
<td>2</td>
<td>Competencies, reflective practice and continuing professional development (CPD)</td>
<td>SR</td>
</tr>
<tr>
<td>3</td>
<td>Pharmacy, pharmacists and professions</td>
<td>MH</td>
</tr>
<tr>
<td>4</td>
<td>History and the institutions of pharmacy</td>
<td>MH</td>
</tr>
<tr>
<td>5</td>
<td>The manufacture and supply of medicines</td>
<td>MH</td>
</tr>
<tr>
<td>6-7</td>
<td>Introduction to ethics and entry Defining Issues Test 2 (DIT-2)</td>
<td>CR</td>
</tr>
<tr>
<td>8</td>
<td>The health service and health policy</td>
<td>CR</td>
</tr>
<tr>
<td>9</td>
<td>Pharmacists' roles and responsibilities</td>
<td>CR</td>
</tr>
</tbody>
</table>
10 Community pharmacy
11 Hospital pharmacy
12 Health information and health informatics – applied literacy skills; dissertation
13 Pharmaceutical care
14 Health and illness; patient care
15 Pharmaceutical care using prescription and non-prescription medicines
16 Clinical introduction to the patient
17 Introduction to pathology and disease
18-22 Introductory pharmacology
23-24 Introduction to complementary and alternative medicine
25-26 Communication skills
27-28 Legislation, PSI Code of Conduct and guidance
29-32 Community drugs schemes

PRACTICAL CLASSES / WORKSHOPS (34 hours)
Ethics: Introduction to principlism (2h) CR
Professionalism in pharmacy practice (2h) CR
Health informatics – applied literacy skills (1h) Librarian
Communication skills (3h) KR
Clinical skills 1.1: Responding to requests for prescription only medicines (3h) MH
Clinical skills 1.2: Responding to requests for OTC medicines (3h) MH
Clinical skills 1.3: Responding to symptoms (3h) MH
Dispensing and patient care 1.1: Introduction to pharmacy software (3h) SR
Dispensing and patient care 1.2: Introduction to prescriptions, use of reference sources, GMS (2h) SR/KR/CR/TG
Dispensing and patient care 1.3: Medical card prescriptions – additional features (2h) SR/KR/CR/TG
Dispensing and patient care 1.4: DPS, HAA, LTI, High Tech schemes (2h) SR/KR/CR/TG
Dispensing and patient care 1.5: Tax refunds, EHIC, ‘hardship’ scheme, stock order forms (2h) SR/KR/CR/TG
Pharmacy practice practical test (1h timetabled; test duration: 50 mins) SR/KR/CR/TG
Introduction to objective structured clinical examination (OSCE) (1h) SR
Preparation for OSCE (2h) SR/MH/KR/CR/TG
Assessment by OSCE (2h) SR/MH/KR/CR/TG

TUTORIALS (4 hours)
Dispensing and patient care 1.2 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 1.3 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 1.4 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 1.5 feedback (1h) SR/KR/CR/TG

DISSERTATION
Literature review and critical analysis of topic associated with the JF course (25h) MH/guided study

OPTIONAL ADDITIONAL COMPONENT
First aid course (certificate evening course, 21 hours)
St. John’s Ambulance Service and Faculty of Health Sciences

DIRECTED READING
Irish Medicines Formulary
British National Formulary
IPHA Summary of Product Characteristics (SmPC) Compendium (www.medicines.ie) and SmPCs on the Health Products Regulatory Authority website (www.hpra.ie)
DrugDex
The Health Services in Ireland, Brendan Hensey, 1998
PSI Pharmacy Practice Guidance Manual
PSI Code of Conduct
PCRS Handbook: Information and Administrative Arrangements for Pharmacists
Legislation relevant to the course.
ASSESSMENT

Each component must be passed (see notes below)

Written examination: 1.5 hours. Section A: 1 essay (from choice of 2). Section B: 40 MCQs (no choice; negative marking, +1/-0.25). Students must independently pass both Section A and Section B.

Dispensing and patient care worksheets: Pharmacy practice practical test (70:30) 10% of total marks
- Minimum 60% in each worksheet, and
- Minimum 50% in practical test (50 mins, 2 cases, no choice), and
- Minimum 60% overall (worksheets and practical test combined)

Clinical skills evaluation – satisfactory/unsatisfactory

Communication skills evaluation and reflection – satisfactory/unsatisfactory

Social and administrative pharmacy group exercise 5% of total marks

Professionalism assessment: Intermediate Concept Measure (ICM) – satisfactory/unsatisfactory

Dissertation

OSCE and associated exercises – satisfactory/unsatisfactory

Reflective continuing professional development e-portfolio – satisfactory/unsatisfactory

NB: Students will be expected to draw upon knowledge and skills gained in this module when undertaking the Clinical Pharmacy Assessment that forms part of the evaluation for modules PH3009A, PH3010 and PH3011. Pharmacy legislation, ethics, professional codes/guidance, community drugs schemes and all aspects of clinical skills/dispensing/patient care are also examinable in subsequent years (Practice of Pharmacy theory papers, clinical skills, dispensing and patient care evaluations, practical tests and OSCEs in all years).

SUMMARY OF HOURS (excludes optional first aid course)

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals/Workshops</th>
<th>Tutorials</th>
<th>Contact hours</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>34</td>
<td>4</td>
<td>70</td>
<td>5</td>
<td>50</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Pass mark, plagiarism

The pass mark for examinations and assessments is 40% except where otherwise indicated. See ‘Assessment’ above. Students should note that College penalties for plagiarism apply to both examinations and continuous assessment.

Late work

Continuous assessment exercises for this module must be presented for evaluation by the specified date(s). They must be presented to a designated member of staff in the manner requested (e.g., in person/by email/through the virtual learning environment), and signed in on the form for this purpose where applicable. Work submitted late will not be assessed unless a valid reason is provided, and permission for late submission should be obtained in advance of the submission deadline from the staff member responsible for the continuous assessment component. Where late work with a valid excuse is accepted for assessment, a penalty may be applied (deduction of up to 60% of the maximum marks available for the component) with the effect that marks for the late work will not normally exceed the pass mark.

Missed classes/assessments

In common with other modules for the pharmacy degree, attendance at all scheduled classes for this module is compulsory. A student who is unable to attend a class for any reason must notify his/her tutor of the reason for absence without delay, and present certification as appropriate. However, all continuous assessment components must be completed even if the student is absent for a valid reason. It is the student’s responsibility to obtain details of the assessment for the missed class(es) from the relevant staff member without delay, and to complete it on a self-study basis. The deadline for submission of the completed assessment to the relevant staff member is five days from the student’s return to College (return date notified to staff member by tutor, based on certification as appropriate) unless otherwise agreed in advance with the relevant
staff member. Where feedback on the assessment has already been provided to the class prior to submission, a penalty may be applied (deduction of up to 60% of the maximum marks available for the assessment), with the effect that marks for the assessment will not normally exceed the pass mark. See above for late submissions.

Progression and supplementals
Students must satisfy the examiners in each component of the module independently. A student may be returned as a ‘qualified fail’ (QF) and refused permission to progress with his/her class until he/she has satisfied the examiners in all components of the module. This may necessitate sitting a supplemental examination and/or repetition/(re)submission of one or more continuous assessment components (including submission of one or more alternative exercises that have been set to replace failed/missed continuous assessment components). In such circumstances, while the marks attained in a supplemental theory examination will not be capped, penalties may be applied to continuous assessment components including supplemental practical tests (deduction of up to 60% of the maximum marks available for the relevant element(s)), with the effect that marks for such elements will not normally exceed the pass mark.

Non-satisfactory reports
Students who have not fulfilled the module requirements with regard to attendance and/or coursework may be reported to the Senior Lecturer as non-satisfactory for one or more terms. Students reported as non-satisfactory for the Michaelmas and Hilary terms may be refused permission to take their annual examinations and may be required by the Senior Lecturer to repeat the year.

Compensation
Because of the importance accorded to this aspect of the course by the PSI, who accredit the degree, it is not possible to compensate in this module.

Professional dress code
Students are required to dress appropriately and behave in a professional manner for elements of the course entailing attendance at external facilities (professional experience in pharmacies, case review in hospitals, health service facilities etc.).
ORIENTATION AND LEARNING SKILLS AND INTEGRATED PHARMACY STUDIES
Year 1 (Junior Freshman) Course Code: PH1007

Staff of the School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof. M. Henman (MH)
Staff of Student Learning Development: Dr. T. O'Connor (TOC)

Coordinator: Assoc. Professor Martin Henman

PRE-REQUISITES: Please refer to the general pre-requisites stipulated on page 23.

COURSE OUTLINE

The module is divided into 2 Units:
PH1007A Orientation and Learning Skills
PH1007B Integrated Pharmacy Studies

UNIT PH1007A: ORIENTATION AND LEARNING SKILLS (MH)

AIMS: To enable the students to acquire a knowledge of the School of Pharmacy and Pharmaceutical Sciences and of the B.Sc. (Pharm.) degree. To encourage the students to appreciate the importance of different study skills and their application in different learning situations. Students will apply Problem-Based Learning (PBL) techniques to selected pharmacy topics.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe the B.Sc. (Pharm) degree and the Learning Supports available in the College
- Reflectively evaluate their own learning skills and strategies
- Assess and reflect upon their personal planning and time-management skills
- Compare the skills required for verbal and written communication
- Discuss the mechanisms by which different approaches to learning and assessment can aid understanding
- Discuss the interrelationships between the different forms of knowledge and the implementation of evidence-based practice
- Describe the role of experiential learning in the development of professional competencies
- Apply the techniques used in Problem-based learning

LECTURES
1 Introduction to staff, procedures and policies and support networks of the School;
2 Expectations of College and of Pharmacy and survival skills;
3 Learning styles and experiential learning;
4 Scientific method & development of understanding in the Humanities;
5 Effective use of Internet and Library;
6 Academic writing and Presentation skills;
7 Self-assessment and Peer group assessment;
8-9 Managing studies and exam techniques.

CAL: 16 hrs
Tutorials/Workshops: 6 hrs

ASSESSMENT
Learning Portfolio Satisfactory/Unsatisfactory
Unit PH1007B: Integrated Pharmacy Studies (MH)

AIMS: To introduce students to the learning style of Problem-Based Learning using a common theme and problems that may require the resources of more than one academic subject area for their solution.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Work in groups
- Clarify the nature and components of a problem
- Identify the resources and resource people who can contribute to its solution
- Allocate tasks and manage a plan of work
- Formulate and evaluate possible solutions
- Develop an agreed solution
- Devise and present the solution as a slide presentation to the class
- Contribute to the individual and group assessment of their peers

Unit OUTLINE: (1 hour)
1 Introduction to Problem Based Learning (PBL) method
Problems are relevant to pharmacy in general, and integrate Pharmaceutical Chemistry, Pharmacology, Toxicology, Formulation, Pharmaceutical Technology, Pharmacognosy and Pharmacy Practice. The problems will be assigned to small groups of 8-10 students for development and presentation of a solution to the whole class with discussion.

WORKSHOPS (15 hours)
5 small group workshops facilitated by staff of the School

PRESENTATION & REVIEW (2 hours) Group presentations and peer assessment

ASSESSMENT Group and Individual assessment based upon contribution to Problem Solving and Presentation and Facilitator assessment Satisfactory/Unsatisfactory

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lectures</th>
<th>Workshops/CAL</th>
<th>Presentation</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1007A</td>
<td>9</td>
<td>22</td>
<td>-</td>
<td>31</td>
<td>30</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>PH1007B</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>19</td>
<td>20</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>38</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>
SENIOR FRESHMAN (2nd Year)

Module details may be subject to corrections/amendments.

- It is each student’s responsibility to be aware of dates, times, locations, etc. of lectures, tutorials, seminars and practical classes.

- Reports, continuous assessments and laboratory notebooks must be presented for assessment by the date specified by the examiner.

- Reports, continuous assessments and laboratory notebooks submitted after the specified date will not be assessed unless a valid reason is given, and students will be deemed not to have satisfied the School’s examination requirements.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)
PHARMACEUTICAL PROPERTIES OF MATERIALS USED IN MEDICINES
Year 2 (Senior Freshman) Code: PH2001
Staff of the School of Pharmacy & Pharmaceutical Sciences: Prof. M. J. Meegan (MM),
Asst. Prof. J. Gilmer (JG), Dr. C. O’Donohoe (CO’D)
Co-ordinator: Asst. Professor John Gilmer

AIMS: To develop and consolidate the fundamental pharmaceutical and bioorganic chemistry of the materials used in medicines from first year with emphasis on more advanced topics. Stereochemistry is introduced, the chemistry of some important heterocycles is covered, as is polymer chemistry relevant to pharmacy.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

• Describe the characteristics of pharmaceutical materials containing conjugated and aromatic systems and consolidate ideas about chemical bonding and its representation.
• Explain the reactivity of benzene and related compounds using mechanistic conventions
• Explain what an azo bond is and how the group behaves in vivo
• Discuss the process of ionisation in acids and bases and electronic and structural factors that affect equilibria
• Identify amine salts and describe their role in solubilisation and stabilization
• Discuss why shape is important in drug molecules;
• Describe how stereochemistry is classified, analysed and how it is accommodated in pharmaceutical science and regulations.
• Explain what a heterocycle is and describe their chemistry and importance in pharmacy
• Explain what a synthetic polymer is, how they are produced, characterised and used in pharmacy.
• Be competent in preparation, purification and characterization of drug substances

COURSE OUTLINE:

Unit PH2001A: Conjugation, aromaticity and reactivity in pharmaceutical compounds (JG)
1. Review of bonding and electronic structure of unsaturated molecules
2. Conjugation; thermodynamic and reactivity issues
3. MO Theory and modelling of pharmaceutically relevant compounds
4. Aromaticity, stability, electronic structure, 4n+2 rule, quasi-aromatics
5. Electrophilic aromatic substitution, metabolism of benzene containing compounds
6. Directing effects in electrophilic substitution
7. Azo compounds, the diazonium reaction, azocoupling, applications in pharmaceutical analysis and drug delivery

Unit PH2001B: Pharmaceutical properties of drugs containing amines and carboxylic acids; physical and electronic characteristics (JG)
8. Amines, the concepts of basicity, relationship between pH and lipophilicity
9. Factors affecting amino drug basicity
10. Acidity in organic compounds, review of pKa and relationship to electronic structure.
11. Acid derivatives: stability, reactivity, amides, ester drugs

Unit PH2001C: Pharmaceutical properties of drugs containing carbonyl groups; physical and electronic characteristics (JG)
12. Structure and reactivity of aldehydes and ketones, a review
13. Acetals and ketals, the concept of the protecting group

Unit PH2001D: Stereochemistry and pharmacy (MM)
14. Definition and concepts of stereochemistry, nomenclature, single and multiple chiral centres
15. Sources and production of chiral drugs
16. Characterisation of chiral drugs
17. Pharmacology of chiral drugs
18. Regulatory aspects of chiral drugs
Unit PH2001E: Basic heterocyclic chemistry relevant to pharmacy (JG)
19. What is a heterocycle? distribution, nomenclature and uses in pharmacy
20. Six membered compounds: Pyridine, reactivity, tautomerism.
21. Six membered pyrimidine
22. Five membered heterocycles: pyrrole, furan, thiophene, imidazole

Unit PH2001F: Properties of pharmaceutical polymers (MM)
23. Free radical chemistry
24. Monomers, polymers, copolymers; structures and definitions
25. Addition polymerization
26. Condensation polymerization

PRACTICAL CLASSES: Drug specifications and process chemistry (MM, CO’D)
1. Sulfonamide preparation and specifications
2. Phenytoin preparation and characterisation
3. Heterocyclic chemistry: Pyrimidine synthesis
4. Pharmaceutical process chemistry I: Nitration of aromatic substrates
5. Pharmaceutical process chemistry II: Alkylation of aromatic substrates
6. Pharmaceutical process chemistry III: Oxidation and reduction chemistry

DIRECTED READING
Mechanism in Organic Chemistry. Sykes.

ASSESSMENT

Written Paper: (2 hours) 4 Questions from 5 80% of total marks
Continuous Practical Assessment 20% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>18</td>
<td>-</td>
<td>44</td>
<td>13</td>
<td>52</td>
<td>109</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component) of the annual examination, but who obtain a Class III or better in the written section will be be returned as a ‘qualified fail’ (QF) and will be required to resubmit in the practical component.
AIMS: To explain more fully physicochemical aspects of substances used in pharmacy and medicine.

PRE-REQUISITES: SUCCESSFUL COMPLETION OF JUNIOR FRESHMAN (YEAR 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Appreciate the importance of pH – rate profiles in respect of the stability of pharmaceutical systems
- Describe the principal mechanistic pathways of drug degradation
- Explain the role of physicochemical properties in relation to drug distribution and activity
- Describe the occurrence of polymorphism in pharmaceutical systems
- Summarise the fundamental theory of electrochemical systems
- Discuss the rheological aspects of pharmaceutical systems and products
- Demonstrate competence in related practical laboratory skills.

COURSE OUTLINE:

LECTURES

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Accelerated Stability Analysis; Extrapolation, Criteria & Limitations</td>
</tr>
<tr>
<td>3-4</td>
<td>pH – rate profiles; V-graphs, determination of minimum pH value</td>
</tr>
<tr>
<td>5</td>
<td>Sigmoid curves (ionisation & pKa) & Bell-shaped curves</td>
</tr>
<tr>
<td>6</td>
<td>Selected examples and Pharmaceutical calculations</td>
</tr>
<tr>
<td>7-10</td>
<td>Hydrolysis & Oxidation of Pharmaceutical Agents</td>
</tr>
<tr>
<td>11-14</td>
<td>Physicochemical properties of drugs in solution (buffers, solubility)</td>
</tr>
<tr>
<td>15</td>
<td>pH – partition profiles / ionisation</td>
</tr>
<tr>
<td>16-18</td>
<td>Electrochemical Definitions; Redox Potentials; Glass Electrode</td>
</tr>
<tr>
<td>19-20</td>
<td>Enhancing solubility – complexation and other methods</td>
</tr>
<tr>
<td>21-22</td>
<td>Pharmaceutical implications of Polymorphism</td>
</tr>
<tr>
<td>23</td>
<td>Introduction to rheology</td>
</tr>
<tr>
<td>24</td>
<td>Pharmaceutical disperse systems</td>
</tr>
<tr>
<td>25</td>
<td>Non-Newtonian systems</td>
</tr>
<tr>
<td>26</td>
<td>Measurement of viscosity</td>
</tr>
<tr>
<td>27</td>
<td>Texture of pharmaceutical systems</td>
</tr>
</tbody>
</table>

PRACTICAL CLASSES (2 hours each)

1. Colour & Clarity of Solutions / Refractive Index / Optical Rotation.
3. Spectrophotometric determination of the ionisation constant (pKₐ). Determined for both bromophenol blue and procaine.
5. The standardisation of molecular size by viscosity measurements

DIRECTED READING

ASSESSMENT
Written theory examination: 2 hour; all 4 questions to be answered 90% of total marks
Practical: Continuous Assessment 10% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>10</td>
<td>-</td>
<td>37</td>
<td>10</td>
<td>54</td>
<td>109</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component) of the annual examination, but who obtain a Class III or better in the written section will be returned as ‘qualified fail’ (QF) and will be required to resubmit in the practical component.
ISOLATION & ANALYSIS OF SUBSTANCES USED IN MEDICINES
Year 2 (Senior Freshman) Course Code: PH2003

Staff of the School of Pharmacy & Pharmaceutical Sciences: Asst. Prof. F. Boylan, Asst. Prof. J. Quigley (JQ), Asst. Prof. A. Sasse (AS)

Coordinator: Asst. Professor Fabio Boylan

AIMS: to reinforce the concepts of quality, together with appropriate regulatory frameworks and guidance, and the application of analytical techniques to pharmaceutical materials (this is a continuation of the course given at JF level). Herbal drugs used as human medicines are introduced as is pharmaceutical spectroscopy in preparation for the instrumental analysis component at JS level.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
• Demonstrate competence in obtaining and interpreting data in relation to standard pharmacopoeial monographs.
• Have the ability to verify the identity of synthetic and crude herbal drug material by reference to the chemical, chromatographic, macroscopic and microscopic characteristics;
• Discuss the regulatory framework for specifications of drug substances and products, including those from herbal sources.
• Be proficient in the application and utilisation of chromatographic and chemical techniques to quantify synthetic and herbal drugs in crude samples, formulated products and clinical samples.
• Discuss the theory and evaluate the application of spectroscopic techniques in pharmaceutical analysis (e.g. IR, UV, NMR and MS).
• Interpret and predict spectral data of drug molecules and deduce the structural fragments/functional groups and the molecular structure of a drug from spectral data

COURSE OUTLINE:

LECTURES

Methods in Pharmacognosy (12 Lectures) (Asst. Prof. Fabio Boylan)
1 Herbal drugs/medicines
2 Pharmacopoeial definitions & methods
3-4 Cell inclusions & vacuolar contents used in pharmacy (e.g., starch)
5-6 Cell types and tissues used in the identification of herbal drugs
7-8 Leaf-derived herbal drugs of pharmaceutical/Ph Eur importance
9 Bark-derived herbal drugs of pharmaceutical/Ph Eur importance
10 Root-derived herbal drugs pharmaceutical/Ph Eur importance
11-12 Pharmacopoeial methods used in the Quality Control of herbal drugs

Specifications and regulatory outline (3 lectures) (Asst. Prof. Astrid Sasse)
13 Introduction to ICH guidelines
14 Setting specifications for drug substances: ICHQ6A
15 Impurities: ICHQ3A; Residual Solvents: ICHQ3C

Pharmaceutical spectroscopy (22 Lectures) (Asst. Prof. Astrid Sasse)
16-19 UV-Vis Spectroscopy: theory and application in pharmaceutical analysis (4 lectures)
20-21 Fluorescence: theory and application in pharmaceutical analysis (2 lectures)
22-25 Infrared Spectroscopy (IR): theory and application in pharmaceutical analysis (4 lectures)
26-31 Nuclear Magnetic Resonance Spectroscopy (¹H NMR, 13C NMR): theory and application in pharmaceutical analysis (6 lectures)
32-37 Mass Spectrometry (MS): theory and application in pharmaceutical analysis (6 lectures)
PRACTICALS
Part 1 (FB)
1. Plant cell inclusions,
2. Plant cells and tissues
3. Examination and qualitative methods used for standardisation of leaves/herbs used in pharmacy
4. Examination and qualitative methods used for standardisation of leaves/herbs used in pharmacy
5. Examination and qualitative methods used for standardisation of leaves/herbs used in pharmacy
6. Quality Evaluation of a herbal drug

Part 2 (JQ)
1. Assay of ferrous fumarate/ferrous gluconate tablets. Iodine/thiosulphate titrimetry
2. Assay of ferric ammonium sulphate*
3. Iodine displacement titrations*
4. Determination of the iodine value of an oil*
5. To determine the % w/v Ca as Ca\(^{2+}\) in Calcium gluconate injection. To determine the % w/v of zinc in zinc gluconate mouthwash/injection
6. To determine the % w/w aluminium in sample provided. To determine the % w/w Bismuth in Bismuth carbonate

Practicals with (*) 2 hours each, otherwise 3 hours.

TUTORIALS
Tutorials in groups (2 tutorials (FB), 5 tutorials (AS) - 2 hrs each) arranged to complement the lecture theory and practical programme

DIRECTED READING
- European Pharmacopoeia.
- ICH Q6A, Q3A, Q3C http://www.ich.org

ASSESSMENT
- Written examination (1) for the section on Pharmacognosy to be held in Michaelmas Term (2 hours):
 Consists of 2 sections.
 [Section A 70%, Section B 30%]
 Section A: 2 long questions
 Section B: 1 short question and 5 MCQs (negative marking, +1/-0.25)
 35% of the total

- Written examination (2) for the sections on Regulatory Guidelines and Pharmaceutical Spectroscopy to be held during the annual examination period (2 hours):
 Consists of 2 sections.
 [Section A 70%, Section B 30%]
 Section A: 2 long questions
 Section B: 1 short question and 5 MCQs (negative marking, +1/-0.25)
 50% of the total

- Practical Examination to be held before Christmas (3 hours): 10% of the total

- Continuous assessment: Practical Book Report 5% of the total

51
SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>33</td>
<td>14</td>
<td>84</td>
<td>33</td>
<td>83</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in all examinations (written examination 1, written examination 2 as well as the practical examination). Each examination must be passed individually. The pass mark for examinations in this module is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examination only in the examination(s) failed. Students who fail an examination (i.e. less than 40%), but who obtain overall a Class III or better for this module will be returned as ‘qualified fail’ (QF) and will be required to take a supplemental examination in the failed examination(s) only. This module cannot be compensated.
AIMS: To provide a continuation course in the formulation of some common pharmaceutical dosage forms, together with aspects of unit operations related to the production of effective medicines.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Describe theoretical and practical aspects of colloids and colloidal preparations
- Outline therapeutic relevance of pharmaceutical nanomaterials
- Discuss physical stability problems associated with production of stable pharmaceutical emulsions
- Describe the manufacture stable pharmaceutical suspensions, solubilised preparations, ointments, creams, and emulsions
- Explain the mass and heat transfer processes of pharmaceutical importance
- Discuss the various unit processes used in the manufacture of pharmaceutical materials and formulations
- Describe the operation of various types of equipment used in unit processes
- Outline the importance of particle size, particle size analysis and powder flowability of pharmaceuticals and discuss different techniques to characterise powder size and flow
- Discuss the steps involved in pharmaceutical preformulation studies in the context of production of solid dosage forms
- Describe the formulation, production and characterisation of compressed tablets

COURSE OUTLINE

LECTURES

Unit PH2004A: FORMULATION – COLLOIDS AND EMULSIONS

1. Colloids and pharmaceutical nanotechnology
2. Classification of colloids, lyophobic and lyophilic colloids
3. Kinetic, optical and electrical properties of colloids, physical stability of colloids.
4. Micellar colloids, solubilisation by micelle formation, ternary phase diagrams
5. Liposomes and liposomal drug delivery systems
6-7. Introduction to nanomedicine
8. Terminology and classification of emulsions, emulsion-based drug delivery systems
9. Thermodynamics of emulsions, primary and secondary emulgents, HLB classification
10. Major emulgent types, emulsion formulation by HLB method
11. Factors affecting emulsion stability, Pickering emulsions, preparation of emulsions
12. Creams and other topical formulations

Unit PH2004B: PHARMACEUTICAL UNIT PROCESSES

13. Introduction to mass transfer processes, mass transfer in still/stagnant gases
14. Mass transfer in moving fluids, interfacial mass transfer, examples of mass transfer options
15. Heat transfer by conduction and convection, heat transfer through walls and across pipes and tubes, heat exchange between fluids across a solid boundary. Heat transfer to boiling liquids.
16-17. Comminution
18-19. Mixing
20-21. Filtration
22-23. Drying
24. Evaporation
25. Distillation
Unit PH2004C: MICROMERITICS

26. Microscopy as a technique for particle size analysis AMH
27. Sieving as a technique for particle size analysis AMH
28. Particle size analysis using sedimentation and electrical sensing zone (Coulter counter) methods AMH
29. Particle size analysis using laser light scattering techniques - laser diffraction particle size analysis and photon correlation spectroscopy AMH
30. Surface area measurement techniques - gas adsorption and permeametry AMH
31. Methods of presentation and interpretation of particle size analysis results AMH
32. Particulate solids in bulk - fundamental and derived properties, factors affecting the flow properties of powders AMH
33-34. Assessment of powder flow, angle of repose and friction, Carr’s index, use of glidants, flow of solids in hoppers and through orifices, the behaviour of powders in the fluidised state AMH

Unit PH2004D: TABLETTING

35. Introduction to tableting terminology, types of tablets LT
36. Preformulation testing of drugs for compressed tablets LT
37-38. Formulation of compressed tablets LT
39. Tablet presses, tooling and mechanism of tablet compression LT
40. Direct compression LT
41. Dry and moist granulation procedures LT
42. Coating of tablets LT
43. Processing problems LT
44. Tablet evaluation LT

PRACTICAL CLASSES (3 hours each) / CONTINUOUS ASSESSMENT

1. Colloidal and solubilised preparation
2. Ointments
3. Emulsifying waxes, ointments and creams
4. Creams continued
5. Oral emulsions
6. Dilutions
7. Revision and repeat
8. Powder mixing
9. Tablet production using a direct compression base (DCB)
10. Tablet evaluation – pharmacopoeial tests

TESTS: One MCQ/short questions test on pharmaceutical calculations

TUTORIALS: Three tutorials on pharmaceutical calculations, formulations and processing/manufacture of pharmaceuticals (LT) - 3 hours

DIRECTED READING

European Pharmacopoeia
British Pharmacopoeia
United States Pharmacopoeia
Martindale
ASSESSMENT

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written theory paper: 3 hours; 5 questions (no choice)</td>
<td>65% of total marks</td>
</tr>
<tr>
<td>Practical examination: 2.5 hours; 3 questions (no choice)</td>
<td>25% of total marks</td>
</tr>
<tr>
<td>Continuous assessment of practical classes, including a calculation test</td>
<td>10% of total marks</td>
</tr>
</tbody>
</table>

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials/Tests</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>30</td>
<td>4</td>
<td>78</td>
<td>45</td>
<td>88</td>
<td>211</td>
<td>10</td>
</tr>
</tbody>
</table>

NB. Students are expected to satisfy the examiners in both written and practical examination components. The pass mark for the module is 40%. Students who obtain an overall mark of less than 40% will be required to sit the Supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) in the annual examination, but who obtain a Class II.2 (50%) or better in the practical examination will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e., less than 50% in the practical examination) of the annual examination, but who obtain a Class III (40%) or better in the written section will be returned as a qualified fail (QF) and will be required to supplement in the practical examination only.
Lecturers:
Dept of Microbiology: Assoc. Prof. A. Bell (AB), Asst. Prof. J. Geoghegan (JG), Assoc. Prof. R. Russell (RR); Asst. Prof. K. Roberts (KR), Asst. Prof. S. Dillon (SD)
Dept of Clinical Microbiology: Prof. T. Rogers (TR), Asst. Prof. S. Smith (SS).
Dept of Biochemistry and Immunology: Assist. Prof. Tim. Mantle (TM), Assoc. Prof. A. Molloy (AM), Assoc. Prof. G. Davey (GD), Assoc. Prof. R. Porter (RP)

Coordinators: Asst. Prof. Shane Dillon (Microbiology, scdillon@tcd.ie), Asst. Prof. David Finlay (Biochemistry/Pharmacy, finlayd@tcd.ie)

AIMS
PH2005A (MI2005): To enable the student to appreciate how microbiology impinges on many aspects of Pharmacy
PH2005B (BI2005): To provide an overview of biochemical aspects of metabolism

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe microbial structure, culture and identification
- Describe medically significant bacteria and fungi and protozoa and their pathogenic mechanisms
- Explain the mechanisms of action of the major antimicrobial drugs
- Discuss infectious-disease epidemiology and zoonoses
- Discuss the determinants of the immune response, autoimmunity, immunocompetence & immunotherapy
- Describe viral structure, multiplication and viral diseases
- Discuss nutrition and metabolism – intermediary and alcohol

COURSE OUTLINE

LECTURES

UNIT PH2005A (MI2005) MICROBIOLOGY Lecturer
(Michaelmas Term: subject to minor changes)
1-4 Microbial Pathogenicity JG
5-8 Immunology RR
9 Vaccines RR
10-12 Viruses KR
13 Urinary tract infections SD
14 Gastrointestinal infections SD
15 Hospital acquired infections SD
16 Respiratory infections TR
17 Meningitis/septicaemia SS
18 Fungi & antifungal therapies TR
19 Protozoal infections AB

PRACTICAL CLASSES (8 hrs)
1 Identifying and staining bacteria
2 Aseptic Technique/Nutritional and atmospheric requirements
3 Differential and selective media
4 Enumeration of bacteria
5 Antibiotics
6 Identification of bacteria
7 Virology
DIRECTED READING
Hugo and Russell, Pharmaceutical Microbiology 7th ed. (2011) and other material to be advised by the lecturers.

MICROBIOLOGY ASSESSMENT
Written Paper: 2 hours
Multiple-choice, 30 questions 40%
4 short questions (no choice) 40%
Practical assessment (reports, attendance, lab book) 20%

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>8</td>
<td>27</td>
<td>5</td>
<td>38</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT PH2005B (BI2005) BIOCHEMISTRY

LECTURES: (Biochemistry with JF Med/SF RT) Lecturer
1-4 Intermediary metabolism (lipids) TM
5-8 Intermediary metabolism (amino acids) TM
9-10 Cholesterol, bile salts and lipoproteins RP
11-12 Alcohol metabolism GD
13-17 Nutrition – anaemias, iron, folate & B12 AM

BIOCHEMISTRY ASSESSMENT
MCQ examination (1 hour) which will include negative marking.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>34</td>
<td>51</td>
<td>2</td>
</tr>
</tbody>
</table>

PLEASE NOTE:
Students must pass each unit of this module. The pass mark for each unit is 40%.
AIMS: Students will appreciate the impact of nutrition on health and illness, the importance of nutritional support for specific patients, and the different forms of nutrient delivery. They will also develop an understanding of appliances and dressings, expand their knowledge of pharmacy legislation and develop their clinical skills in responding to symptoms and prescribed therapy.

PRE-REQUISITES: See general pre-requisites for Senior Freshman year (page 45). Exceptions may be made in individual cases for students who have transferred from a pharmacy degree programme in another university, including one-year international students.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Describe the components of adequate nutrition and their role in maintaining health.
- Explain the provision of energy by the body in response to trauma and illness and discuss the role of nutritional support in patients.
- Describe the characteristics of oral, enteral and parenteral nutrition and their role in supporting patients who have undergone surgery or have ongoing illness.
- Describe the types and uses of ostomy appliances, vascular support hosiery and related materials.
- Explain the significance of dietary supplements of lipids and of chemoprevention.
- Tabulate the poisonous properties of certain plants and food contaminants.
- Describe common oral and dental conditions and their treatment.
- Illustrate wounded skin and the healing process.
- Tabulate the actions and uses of different dressing types.
- Critically discuss the provisions of the Medicinal Products (Prescription and Control of Supply) Regulations, the controls on unlicensed medicines and the requirements for dispensing prescriptions.
- Describe the requirements for establishing and operating a retail pharmacy business.
- Systematically collect, interpret and apply knowledge about patients, their conditions and their medicines, in order to provide and justify treatment recommendations and patient counselling, in a diverse range of patient case studies [more complex cases than in PH1006].
- Dispense mock prescriptions in accordance with legal, clinical, administrative, ethical and professional requirements [more complex prescriptions than in PH1006].
- Devise a care plan to identify, prevent and manage drug-related problems.
- Critically evaluate existing literature and demonstrate the principles of academic writing by presenting a structured dissertation on an assigned topic.

COURSE OUTLINE:

Note: Due to timetabling constraints, the sequence of classes may differ from that below.

<table>
<thead>
<tr>
<th>LECTURES (40 hours)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction. Clinical skills and dissertation</td>
<td>MH</td>
</tr>
<tr>
<td>2 Feedback. Competencies, reflective practice and continuing professional development (CPD)</td>
<td>SR</td>
</tr>
<tr>
<td>3-7 Medicinal Products (Prescription and Control of Supply) Regulations</td>
<td>SR</td>
</tr>
<tr>
<td>8-10 Establishment and operation of a retail pharmacy business</td>
<td>SR</td>
</tr>
<tr>
<td>11 Unlicensed medicines (legislative controls)</td>
<td>SR</td>
</tr>
<tr>
<td>12-13 Nutrition and dietetics in health and disease</td>
<td>MH</td>
</tr>
<tr>
<td>14 Oral supplements</td>
<td>MH</td>
</tr>
<tr>
<td>15-17 Enteral and parenteral feeding and nutrition</td>
<td>TG</td>
</tr>
<tr>
<td>18-21 Vitamins</td>
<td>TG</td>
</tr>
<tr>
<td>22 Lipids as dietary supplements</td>
<td>IH</td>
</tr>
<tr>
<td>23 Poisonous food constituents</td>
<td>IH</td>
</tr>
<tr>
<td>24 Chemoprevention</td>
<td>FB</td>
</tr>
<tr>
<td>25-27 Ostomy</td>
<td>KR</td>
</tr>
<tr>
<td>28-29 Vascular support hosiery and surgical hosiery</td>
<td>KR</td>
</tr>
</tbody>
</table>
30-31 Dental health KR
32-35 Wound types, healing, wound dressings; bandages KR
36 Patient factors in drug treatment MH
37-39 Clinical laboratory tests: Urea and electrolytes (U&E), renal function, full blood count (FBC) TG
40 Adverse drug reactions (ADRs) TG

PRACTICAL CLASSES / WORKSHOPS (36 hours)
Nutrition: Administration and consideration of medication use (2h) TG
Nutrition: Disorders of absorption and special foods (2h) MH
Ostomy and vascular support hosiery (2h) KR
Surgical dressings (2h) KR
Clinical skills 2.1: Responding to requests for prescription only medicines (3h) MH
Clinical skills 2.2: Responding to requests for OTC medicines (3h) MH
Clinical skills 2.3: Responding to symptoms (3h) MH
Clinical skills 2.4: Drug interactions and other drug-related problems (3h) TG
Dispensing and patient care 2.1: Prescription and control of supply regulations (2h) SR/KR/CR/TG
Dispensing and patient care 2.2: Emergency supply (2h) SR/KR/CR/TG
Dispensing and patient care 2.3: Primary-secondary care interface (2h) SR/KR/CR/TG
Dispensing and patient care 2.4: Unlicensed and extemporaneous medicines (2h) SR/KR/CR/TG
Dispensing and patient care 2.5: Hospital dispensing (2h) SR/TG/CR/TG
Pharmacy practice practical test (1h timetabled; test duration: 50 mins) SR/KR/CR/TG
Objective structured clinical examination (OSCE): Required knowledge/skills and their evaluation (1h) SR
Preparation for OSCE (2h) SR/MH/KR/CR/TG
Assessment by OSCE (2h) SR/MH/KR/CR/TG

TUTORIALS (5 hours)
Dispensing and patient care 2.1 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 2.2 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 2.3 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 2.4 feedback (1h) SR/KR/CR/TG
Dispensing and patient care 2.5 feedback (1h) SR/KR/CR/TG

DISSERTATION
Literature review and critical analysis of topic associated with the SF course (25h) MH/guided study

ASSESSMENT
Each component must be passed (see notes below)
Written examination: 1.5 hours. Section A: 1 essay (from choice of 2). Section B: 40 MCQs (no choice; negative marking, +1/-0.25). Students must independently pass both Section A and Section B. 75% of total marks
Dispensing and patient care worksheets; minimum 60% in each worksheet 7% of total marks
Pharmacy practice practical test (50 mins, 2 cases, no choice); minimum 60% 3% of total marks
Clinical skills and nutrition assessments 5% of total marks
Dissertation 10% of total marks
OSCE and associated exercises – satisfactory/unsatisfactory ---
Reflective continuing professional development e-portfolio – satisfactory/unsatisfactory ---

NB: Students will be expected to draw upon knowledge and skills gained in this module when undertaking the Clinical Pharmacy Assessment that forms part of the evaluation for modules PH3009A, PH3010 and PH3011. Pharmacy legislation and all aspects of clinical skills/dispensing/patient care are also examinable in subsequent years (Practice of Pharmacy theory papers, clinical skills, dispensing and patient care evaluations, practical tests and OSCEs in all years).

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals/Workshops</th>
<th>Tutorials</th>
<th>Contact hours</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>36</td>
<td>5</td>
<td>81</td>
<td>5</td>
<td>39</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>
Pass mark, plagiarism
The pass mark for examinations and assessments is 40% except where otherwise indicated. See ‘Assessment’ above. Students should note that College penalties for plagiarism apply to both examinations and continuous assessment.

Late work
Continuous assessment exercises for this module must be presented for evaluation by the specified date(s). They must be presented to a designated member of staff in the manner requested (e.g., in person/by email/through the virtual learning environment), and signed in on the form for this purpose where applicable. Work submitted late will not be assessed unless a valid reason is provided, and permission for late submission should be obtained in advance of the submission deadline from the staff member responsible for the continuous assessment component. Where late work with a valid excuse is accepted for assessment, a penalty may be applied (deduction of up to 60% of the maximum marks available for the component) with the effect that marks for the late work will not normally exceed the pass mark.

Missed classes/assessments
In common with other modules for the pharmacy degree, attendance at all scheduled classes for this module is compulsory. A student who is unable to attend a class for any reason must notify his/her tutor of the reason for absence without delay, and present certification as appropriate. However, all continuous assessment components must be completed even if the student is absent for a valid reason. It is the student’s responsibility to obtain details of the assessment for the missed class(es) from the relevant staff member without delay, and to complete it on a self-study basis. The deadline for submission of the completed assessment to the relevant staff member is five days from the student’s return to College (return date notified to staff member by tutor, based on certification as appropriate) unless otherwise agreed in advance with the relevant staff member. Where feedback on the assessment has already been provided to the class prior to submission, a penalty may be applied (deduction of up to 60% of the maximum marks available for the assessment), with the effect that marks for the assessment will not normally exceed the pass mark. See above for late submissions.

Progression and supplementals
Students must satisfy the examiners in each component of the module independently. A student may be returned as a ‘qualified fail’ (QF) and refused permission to progress with his/her class until he/she has satisfied the examiners in all components of the module. This may necessitate sitting a supplemental examination and/or repetition/(re)submission of one or more continuous assessment components (including submission of one or more alternative exercises that have been set to replace failed/missed continuous assessment components). In such circumstances, the marks available for the supplemental examination may be capped at the pass mark, while penalties may be applied to practical tests and/or other continuous assessment components (deduction of up to 60% of the maximum marks available for the relevant element(s)), with the effect that marks for such elements will not normally exceed the pass mark.

Non-satisfactory reports
Students who have not fulfilled the module requirements with regard to attendance and/or coursework may be reported to the Senior Lecturer as non-satisfactory for one or more terms. Students reported as non-satisfactory for the Michaelmas and Hilary terms may be refused permission to take their annual examinations and may be required by the Senior Lecturer to repeat the year.

Compensation
Because of the importance accorded to this aspect of the course by the PSI, who accredit the degree, it is not possible to compensate in this module.

Professional dress code
Students are required to dress appropriately and behave in a professional manner for elements of the course entailing attendance at external facilities (professional experience in pharmacies, case review in hospitals, health service facilities etc.).
PROFESSIONAL DEVELOPMENT AND CAREER PLANNING
Year 2 (Senior Freshman)
Course Code: PH2007

Staff of the School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof M. Henman (MH); Teacher-practitioners and allied staff: Ms. K. Rossi (KR); Ms. N. McMahon (NMcM); postgraduate students in the School of Pharmacy and Pharmaceutical Sciences (PG)
External staff: Selected external speakers representing a range of pharmacy career paths (Ext)
Staff of Careers Advisory Service (CAS).

Coordinator: Assoc. Professor Martin Henman

N.B. This module may be substituted with a Broad Curriculum module. Students who elect to take the Broad Curriculum course must inform the Module Coordinator of PH2007. In the case where a student is taking a Broad Curriculum module attendance at the Community Pharmacy attachment is required. Attendance at lectures, submission of curriculum vitae and completion of the online self-evaluation tools (GradIreland Career Report® etc. provided by CAS) are strongly recommended.

AIMS: The students will acquire an understanding of the purpose and potential value of work experience within the undergraduate degree programme. Students will consider the relative merits of Continuing Education and of Continuous Professional Development for Pharmacists in Ireland and their relation to Fitness-to-Practice requirements. Students will acquire knowledge of and practice the skills needed for self-development and career planning.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe the role and functions of various bodies responsible for postgraduate education for pharmacists in Ireland
- Compare and contrast Continuing Education and Continuous Professional Development in the Health Professions
- Describe the requirements for re-certifications and Fitness-to-Practice in the Health Professions in Ireland
- Describe the different skills required to practice in different branches of pharmacy
- Describe the facilities offered by the Careers Advisory Service
- Develop a curriculum vitae and practice interviewing techniques
- Describe the process of undergraduate education and professional registration of selected health care professional in Ireland
- Reflect upon work experience to develop their professional competencies
- Use a self-reflective approach to analyzing their personal motivation, values, interests and skills and to devising a plan to meet their personal development goals

COURSE OUTLINE

LECTURES
1 Pharmacy Education and Continuous Professional Development MH
2 Career Planning SRy
3 Community Pharmacy KR + Ext
4 Hospital Pharmacy NMcM + Ext
5 Industrial Pharmacy MH + Ext
6 Postgraduate Research MH + PG
7 Regulatory Careers MH + Ext
8 Curriculum vitae SRy
9 Work Experience, Internships and MPharm MH + Ext
10-11 Interview techniques & Career Progression SRy

WORKSHOPS & ROLE PLAY
Interview skills (2 hrs) SRy/FH
Presentation of group research projects to class (3 hrs) MH/SRy/FH
ASSIGNMENT: Group project to determine skill set and research career opportunities in one of a number of areas.

COMMUNITY PHARMACY ATTACHMENT (2 hours)
Community pharmacy practice: pharmacy layout and organisation; staff roles and responsibilities; clinical activities (dispensary, pharmacy counter, consultation room)

ASSESSMENT
Submission of a curriculum vitae and its revision Satisfactory/unsatisfactory
Development and submission of a personal reflection on your course and career planning Satisfactory/unsatisfactory
Community pharmacy attachment report Satisfactory/unsatisfactory
Interprofessional learning exercise Satisfactory/unsatisfactory

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Workshops</th>
<th>Presentation</th>
<th>Pharmacy attachment</th>
<th>Contact hours</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>82</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

ADVANCE NOTIFICATION: Pharmacy Work Experience (Module PH3006)
During the summer vacation between the Senior Freshman and Junior Sophister years, each student is required to undertake 35 hours of practice experience in a community or hospital pharmacy setting during a one week full-time period, i.e. the work experience is expected to take the form of a standard 5-day working week. Its satisfactory completion must be signed off by a registered pharmacist in the workplace, and the student must complete a structured work experience report. The student’s report and pharmacist’s declaration associated with this component must be submitted by the start of the Junior Sophister academic year, and they form part of the assessment for module PH3006, where they will be graded as satisfactory/unsatisfactory.
Staff of School of Pharmacy & Pharmaceutical Sciences: Asst. Prof. D. Finlay (DF), Prof. M. Meegan (MM), Assoc. Prof. L. O’Driscoll (LOD), Asst. Prof. A. Sasse (AS)

Staff from the School of Biochemistry: Prof. A. Bowie (AB), Assoc. Prof. D. Zisterer, (DZ).

Coordinator: Asst. Professor Astrid Sasse

AIMS: Students will study the characteristics of proteins and carbohydrates and their components and will be provided with an introduction to Pharmaceutical Biotechnology including gene structure and expression, genetic engineering and upstream processing.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of the module the student will be able to:

- Explain the term ‘pharmaceutical biotechnology’
- Discuss the basic principles of gene transcription and translation.
- Describe the process of genetic engineering.
- Describe techniques routinely used when genetically engineering mammalian cells for recombinant protein production.
- Describe the structure and properties of amino acids, peptides, nucleosides and carbohydrates and discuss the source, preparation and use of representative examples of therapeutically important peptides.
- Illustrate the hierarchy of carbohydrates and protein structure and some of the characteristics of carbohydrates and proteins relevant to medicines production and use.
- Explain and illustrate stereochemistry, chemical reactivity and medical use of carbohydrates.

COURSE OUTLINE:

LECTURES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gene structure and expression – DNA structure</td>
<td>AB</td>
</tr>
<tr>
<td>2</td>
<td>Gene structure and expression – DNA Replication</td>
<td>DZ</td>
</tr>
<tr>
<td>3-4</td>
<td>Gene structure and expression – Transcription</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>Gene structure and expression – Translation</td>
<td>DZ</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to Pharmaceutical Biotechnology</td>
<td>DF</td>
</tr>
<tr>
<td>7-8</td>
<td>Genetic Engineering; the recombinant process</td>
<td>DF</td>
</tr>
<tr>
<td>9-11</td>
<td>Upstream processing</td>
<td>DF</td>
</tr>
<tr>
<td>12</td>
<td>α-Amino acids; structure, sources and pharmaceutical uses</td>
<td>MM</td>
</tr>
<tr>
<td>13</td>
<td>α-Amino acids; chemistry, bioorganic chemistry and production methods</td>
<td>MM</td>
</tr>
<tr>
<td>14-15</td>
<td>Physical properties and ionization of α-Amino acids</td>
<td>MM</td>
</tr>
<tr>
<td>16</td>
<td>Pharmaceutical peptides: primary structure and physicochemical char.</td>
<td>MM</td>
</tr>
<tr>
<td>17</td>
<td>Production of pharmaceutical peptides: solid phase synthesis</td>
<td>MM</td>
</tr>
<tr>
<td>18</td>
<td>Chemical and physical stability of pharmaceutical peptides</td>
<td>MM</td>
</tr>
<tr>
<td>19</td>
<td>Pharmaceutical peptide sequencing methods</td>
<td>MM</td>
</tr>
<tr>
<td>20</td>
<td>Peptide drugs, design and pharmaceutical properties</td>
<td>MM</td>
</tr>
<tr>
<td>21</td>
<td>Pharmaceutical proteins; tertiary structure and physico-chemical props</td>
<td>MM</td>
</tr>
<tr>
<td>22</td>
<td>Classification and stereochemistry of carbohydrates</td>
<td>AS</td>
</tr>
<tr>
<td>23</td>
<td>Identification reactions for carbohydrates</td>
<td>AS</td>
</tr>
<tr>
<td>24</td>
<td>Reactivity and degradation of carbohydrates</td>
<td>AS</td>
</tr>
<tr>
<td>25</td>
<td>Mono- and disaccharides: structure and physico-chemical char.</td>
<td>AS</td>
</tr>
<tr>
<td>26-27</td>
<td>Glycoproteins – biosynthesis and physiological function</td>
<td>AS</td>
</tr>
<tr>
<td>28</td>
<td>Polysaccharides, aminoglycosides</td>
<td>AS</td>
</tr>
<tr>
<td>29-30</td>
<td>Introduction to laboratory techniques used throughout the process of</td>
<td>LOD</td>
</tr>
<tr>
<td></td>
<td>gene cloning, genetic engineering, and assessing the success of subsequent recombinant protein production.</td>
<td></td>
</tr>
</tbody>
</table>
The following practicals from BIOCHEMISTRY accompany this pharmaceutical biotechnology course.

PRACTICAL CLASSES (4 hours each)
1. Introduction to safety in the lab, Good Laboratory Practice (2 hrs)
2. Subcellular Fractionation (Part 1)
3. Subcellular Fractionation (Part 2)
4. Protein purification
5. Detecting Polymorphisms (Part 1)
6. Detecting Polymorphisms (Part 2)
7. Oxidative Phosphorylation

Practical Tutorials (2x 2 hrs, 1x 1 hr)

DIRECTED READING

ASSESSMENT

Theory written paper: 2 hours; 5 questions out of 5 to be answered (some internal choice may be available)
Weighting 80% of total marks

Continuous assessment of practical work 20% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Pr. reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>26</td>
<td>5</td>
<td>61</td>
<td>5</td>
<td>54</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component), but who obtain a Class III or better in the written section will be returned as ‘qualified fail’ (QF) and will be required to resubmit in the practical component.

Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only.
AIMS: To introduce the student to the basic principles of pharmacology, drug development and experimental techniques used in pharmacology.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this course the student will be able to:

- State the variety of targets to which drugs bind in the body and illustrate their transduction and cell signalling mechanisms
- Define agonist (full, partial and inverse), antagonist (competitive and non-competitive) and recall selected examples of each
- Analyse receptor binding experiments and deduce the receptor binding parameters B_{MAX} and K_D
- Construct dose response curves and calculate drug potency of both agonists and antagonists
- Illustrate the principles of drug absorption, distribution, metabolism and excretion and define the terms, pKa, bioavailability, volume of distribution, clearance, half-life, and K_e.
- Illustrate the organisation and mode of neurotransmission within the sympathetic, para sympathetic, enteric and somatic nervous systems
- Describe the mechanisms of action and clinical uses of cholinergic and adrenergic drugs within the peripheral nervous system
- Define the key steps associated with excitatory and inhibitory neurotransmission in the brain and provide selected examples of drugs which influence these steps
- Describe the various stages of drug discovery, development and the clinical trials process

COURSE OUTLINE:

LECTURES (AH)
1. Introduction to Pharmacology
2. Targets of drug action.
3. Receptors (ligand gated ion channels)
4. Receptors (G protein coupled, kinase linked and intracellular receptors)
5-6. Dose response; agonism and antagonism
7. Therapeutic and toxic doses
8. Overview of pharmacokinetic processes; absorption and distribution
9. Drug metabolism and excretion
10. Pharmacokinetic modelling
11. Neurotransmission
12. Autonomic nervous system
13. Cholinergic transmission
14. Cholinergic agents; anticholinesterases
15. Muscarinic blockers; ganglionic blockers
16. Adrenergic transmission
17. Direct/indirect sympathomimetics; α/β stimulants
18. NANC transmitters
19. Somatic system and skeletal neuromuscular blocking agents
20. Excitatory neurotransmitters in the central nervous system
21. Inhibitory neurotransmitters in the central nervous system
22-23. Monoaminergic neurotransmission
24. Peptide transmitters
25-26. Drug design, development and testing
PRACTICAL CLASSES (3 hours each)
1. Drug targets and receptor transduction
2. Introductory Pharmacokinetics Workshop. Computer simulated experiments and data analysis
3. Dose response – the guinea pig ileum preparation. Computer simulated experiments and data analysis
4. Quantifying Antagonist Activity – the pA2 scale: Computer simulated experiments and data analysis
5. Receptor Binding Workshop – saturation binding: Laboratory demonstration
6. Receptor Binding Analysis
7. Blood Pressure

TUTORIALS: (1 hour)
Course review.

DIRECTED READING:
Rang and Dale’s Pharmacology (7th Ed.) by H.P. Rang, M.Maureen Dale, Churchill Livingstone (2011)
by Kenneth P. Minneman
The Biochemical Basis of Neuropharmacology, 8th Ed., J. R. Cooper, F. E. Bloom, R. H. Roth, OUP USA (2002)

ASSESSMENT:
Written Examination: 2 hours
Part 1, answer 3 questions out of 5 54% of total marks
Part 2, 20 multiple choice questions, answer all questions; negative marking scheme 36% of total marks
Continuous assessment practicals (5 Assignments carrying 2% each) 10% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Tutorials</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>21</td>
<td>48</td>
<td>21</td>
<td>51</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>
AIMS: To allow the student to understand how chemical mediators modulate the body’s response to injury and infection; to enable the student to appreciate how microbiology impinges on many aspects of Pharmacy; to acquire a knowledge of the mode of action of antibiotics, anti-parasitic drugs and anti-viral agents.

PRE-REQUISITES: Successful completion of Junior Freshman (Year 1)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Recall the various chemical mediators of inflammation and their physiology and pathology
- Identify the mechanism of action of the different classes of anti-inflammatory drugs, their clinical use, cautions and side effects.
- Identify the mechanism of action of the different groups of antibiotics as a basis for their selective toxicity.
- Recall the clinical use of antibiotics, their side effects and cautions to use.
- Recall the nature of antibiotic use and the means to reduce antimicrobial resistance.
- Recall the epidemiology of zoonoses and fungal infections
- Identify the mechanism of action of antifungal drugs, their clinical use and side effects
- Classify determinants of the immune response, autoimmunity, immunocompetence & immunotherapy
- Identify viral structure, mechanisms of viral multiplication and viral diseases
- Identify the mechanism of action of the different classes of antiviral drugs, their clinical use and side effects

COURSE OUTLINE: The Module is divided into two Units.

Unit PH2001A CHEMICAL MEDIATORS AND DISEASE

LECTURES
1-2 Inflammation and inflammatory mediators MR
3-4 Nitric Oxide MR
5-6 Aspirin & Non-selective COX inhibitors MR
7 Selective COX inhibitors MS
8-9 Corticosteroids MS
10 DMARDS MR
11 Anti-lymphocyte agents MR
12 Anti-cytokine drugs MR

SEMINAR (2 hours)
Clinical pharmacology and treatment of selected inflammatory diseases MR

DIRECTED READING
Reference material supplied
UNIT PH2010B – CHEMOTHERAPY OF INFECTIOUS DISEASE

LECTURES
1. Antimicrobials: mechanism of action of main antibiotics NF
2. Antimetabolite NF
3. Cell wall Inhibitors NF
4. Drugs acting at the cell membrane NF
5-6. Inhibitors of DNA/Protein synthesis NF
7-8. Tuberculosis and antituberculc drugs NF
9-10. Fungal Diseases and antifungal agents NF
11. Endotoxin shock NF
12-13. Protozoal & Parasitic diseases in man and their treatment NF
14-17. Antivirals CM

SEMINAR (2 hours)
Drug resistance & strategies to counteract it NF

DIRECTED READING

ASSESSMENT
Weighting
2 hour exam (100 multiple-choice questions) 90% of total marks
Continuous assessment 10% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lectures</th>
<th>Seminars</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2010A</td>
<td>12</td>
<td>2</td>
<td>14</td>
<td>36</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>PH2010B</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>31</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>4</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>
JUNIOR SOPHISTER (3rd Year)

Module details may be subject to corrections/amendments.

- It is each student’s responsibility to be aware of dates, times, locations, etc. of lectures, tutorials, seminars and practical classes.

- Reports, continuous assessments and laboratory notebooks must be presented for assessment by the date specified by the examiner.

- Reports, continuous assessments and laboratory notebooks submitted after the specified date will not be assessed unless a valid reason is given, and students will be deemed not to have satisfied the School’s examination requirements.

PRE-REQUISITES: COMPLETION OF THE SENIOR FRESHMEN YEAR (YEAR 2)
AIMS: To develop an understanding of the theory and practice of medicinal chemistry in the context of pharmacy and to provide an understanding of analysis and characterisation of pharmaceutical materials in a regulatory context.

PRE-REQUISITES: Pharmaceutical properties of Materials used in Medicines (PH2001); Physico-chemical Aspects & Specifications of Substances used in Medicines II (PH2002); Isolation, Separation & Analysis of Substances used in Medicines (PH2003)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Apply and interpret Quantitative Structure - Activity Relationship studies (QSAR) in pharmaceutical applications.
- Explain the function of receptors, agonists and antagonists together with the action of drugs at selected receptors
- Describe the medicinal chemistry of selected major therapeutic classes of drugs which act as enzyme inhibitors e.g. NSAIDs, ACE inhibitors and various antibiotics
- Demonstrate competence in the practical laboratory techniques used in the analysis and characterisation of pharmaceutical materials
- Demonstrate ability to interpret and evaluate a research paper in a topic in pharmaceutical chemistry

COURSE OUTLINE

LECTURES

Unit PH3002A: Techniques in Drug design and optimization
Quantitative Structure Activity Relationships; Physical organic chemistry of drugs (JQ)

1. Biological Activity and Physicochemical Properties
2. Electronic Parameters: The Hammett Constant
3. Resonance Contributions, Inductive Substituent Constants; Structure/Activity Studies
4. Lipophilic Parameters: The Partition Coefficient, The Hansch-Fujita Substituent Constant
5. Determination of the Partition Coefficient
6. Empirical Approaches to Estimation of Log P
7. Complications in QSAR due to Ionization
8. The Fragmentation Constant
9. The Additivity Concept; Structural explanation of deviations observed
10. Structure/Activity Studies: Linear & Nonlinear dependence
11. The Hansch Kinetic Model (multicompartmental analysis), log P0
12. Steric Parameters: Taft & STERIMOL Parameters

Unit PH3002B: Enzyme Inhibitors (JG, MM)

1. Overview of enzyme inhibitors in pharmacy
2. Kinetic models of enzyme inhibition 1
3. Kinetic models of enzyme inhibition 2
4. Methods and prospects in enzyme inhibitor drug design
5. Case history: the development of the ACE inhibitors
6. COX-1 inhibitor medicinal chemistry, SAR, MOA
7. COX-2 inhibitors, development SAR and biological effects
8. Kinetic models of interactions between COX and NSAIDs, aspirin and Coxibs
9. Inhibitors of acetylcholinesterase I
10. Inhibitors of acetylcholinesterase II
Unit PH3002C: Medicinal Chemistry: Chemotherapeutics, Antibiotics and Antimicrobial Agents (MM)
1. Molecular targets for antibiotics: Penicillin and cephalosporin antibiotics: structure and clinical examples; Molecular mechanism of action of penicillins;
2. Characterisation and chemical stability properties of penicillins
3. Production methods for 6-APA and semisynthetic penicillins
4. Broad spectrum semisynthetic penicillins; SAR and clinical prodrugs
5. Cephalosporins; structures, characterization and chemical reactivity
6. Production methods for 7-ACA; SAR for semisynthetic cephalosporins
7. Case study development of a semisynthetic cephalosporin
8. Beta-lactamase inhibitors; structure and clinical role of betalactamase inhibitors
9. Macrolides, aminoglycosides, glycopeptide, oxazoladinones and quinolones: structures, clinical examples and mechanism of action

Unit PH3002D: Drugs acting at Nuclear Receptors: Steroid Drugs (AS)
1. Classification of receptors as targets for drugs
2. Steroid drugs: Introduction to steroid drug structure and stereochemistry
3. Androgens: Biosynthesis, metabolism, signal transduction, physiological/pharmacological effects
4. Androgens: SAR, anabolics, 5α-reductase inhibitors
5. Estrogens: Biosynthesis, metabolism, physiological/pharmacological effects, SAR, SERM
6. Progestins: Biosynthesis, classification, SAR, physiological/pharmacological effects, SPRM
7. Adrenocorticoids: Structural modification and activity (JG)
8. Glucocorticoids: SAR, classification, genomic & non-genomic response

Unit PH3002E: Drugs acting at Cholinergic and Adrenergic receptors (MM)
1. Cholinergic receptor structure: The role of acetylcholine as a neurotransmitter
2. Cholinergic agonists
3. Cholinergic antagonists
4. Adrenergic receptor antagonists

Unit PH3002F: Design of H2 Receptor antagonists and related drugs (JQ)
1. Histamine: protonation, tautomerism, ionisation & conformation
2. Chemical evidence of active form at H1 & H2 receptors
3. The lead compound - Nα-guanylhistamine; Isothiourea analogue
4. Thio urea derivative (pure antagonist); development of burimamide
5. Development of metiamide (pKα of the imidazole ring)
6. Analogues of cimetidine; Effect of pKα of substituent
7. Conformational isomers of cimetidine; Desolvation and dipole orientation of derivatives wrt activity
8. Gastric acid secretion inhibitors: Proton Pump Inhibitors 1
9. Gastric acid secretion inhibitors: Proton Pump Inhibitors 2

PRACTICAL LABORATORY CLASSES: (3 hours each)
1. UV Spectroscopy
2. Quality Specifications
3. Quantitation by Extraction
4. Stability Study of Nifedipine
5. Hydrolysis of Aspirin
6. Polarimetry, Identification of Carbohydrates
7. HPLC-Fluorescence
8. Infrared Spectroscopy
9. Aquametry
10. Gas Liquid Chromatography (GLC)
11. pH Measurements, Diazotitration
12. NMR & NIR

RESEARCH PRESENTATION
Oral presentation (10 minutes plus 5 minutes discussion) of a “cutting edge” research paper on a topic in the area of pharmaceutical chemistry (total seminar time 2 hours).
SEMINARS AND TUTORIALS: 1x2 hour seminar (AS)
Seminar based on assigned topics in Pharmaceutical Analysis.

DIRECTED READING
Principles of Medicinal Chemistry; Foye, Lemke and Williams; 7th Ed. Lippincott Williams & Wilkins; 2012.

ASSESSMENT

Written Paper: 3 hours, 5 questions out of 5 to be answered 65% of total marks
(some internal choice may be available)

Practical:
Based on continuous assessment (5%),
Final reports (15%),
Research presentation (5%)
Written test (MCQ and short questions) (10%) 35% of total marks

Students are required to take a written test in Hilary Term. This Examination comprises short questions and multiple choice questions based on the theory underlying the practical class in the Junior Sophister year.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Seminars</th>
<th>Total Contact</th>
<th>Practical write-ups</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>36</td>
<td>4</td>
<td>92</td>
<td>36</td>
<td>112</td>
<td>240</td>
<td>10</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component), but who obtain a Class III or better in the written section will be returned as a qualified fail (QF) and will be required to resubmit/resit in the practical component.
NATURAL SOURCES OF DRUGS AND SUBSTANCES USED IN MEDICINES
Year 3 (Junior Sophister) Course Code: PH3003

Staff of the School of Pharmacy & Pharmaceutical Sciences: Asst. Prof. J. Walsh (JW), Assoc. Prof. H. Sheridan, (HS), Asst. Prof. F. Boylan (FB) and Assoc. Prof. I. Hook (IH)

Coordinator: Asst. Professor John J. Walsh

AIMS: To provide the student with an understanding of the sources and properties of those drugs and related pharmaceutical materials used in medicine, which are produced from natural sources.

PRE-REQUISITES Isolation, Separation and Analysis of Substances used in Medicines (PH2003)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
• Describe the biosynthetic pathways employed by plants and fungi to produce compounds of pharmaceutical importance
• Identify and describe the sources and general properties of key phytochemical groups especially alkaloids, anthranoids, phenolics, cardiac glycosides, saponins, mono-, di- and sesquiterpenes
• Recognise and explain methods for the isolation of natural products
• Use both analytical and structural techniques to determine the purity and identity of compounds from natural sources
• Outline the different types, sources and properties of lipids, including fatty acids, and explain their importance in living systems and their influence on health and disease
• Outline the types and importance of analytical procedures used to identify and determine the quality of lipids used in the preparation of medicines and nutraceuticals (dietary supplements)
• Advise on and critically assess the importance of lipid types in the diet and their use in medicine formulations
• Describe the types of toxic and allergenic constituents produced by plants, animals and microorganisms occurring naturally in the environment and food, identify the risks associated with their occurrence, together with their treatment and/or prevention
• Recognise and discuss the importance of biodiversity prospecting as well as being aware of biodiversity preservation
• Recognise and describe several approaches to screening natural materials for bioactivity and identify when it is appropriate to apply each of these different approaches.
• Recognise and describe each step involved in the bench to bedside development of commonly prescribed drugs derived from natural sources.

COURSE OUTLINE

LECTURES Lecturer
1-8 Module overview and Plants as phytochemical laboratories JW
9-14 Biodiversity prospecting FB
15-20 Alkaloids – general properties and phytochemistry HS
21-24 Key alkaloid groups (tropane, quinoline, isoquinoline, indole) HS
25-28 Glycosides (general properties), anthranoids, simple and complex phenolics. FB
29 Plant polysaccharides FB
30-34 Dietary lipids (simple & complex): isolation, composition, uses. IH
35-39 Phytotoxicology, mycotoxins, allergens. IH
40-48 Bench to bedside development of naturally derived substances in use to treat anxiety/insomnia, depression, cancer, migraine, lower-back pain, Alzheimer’s disease and hypercholesterolaemia. JW
PRACTICALS (27 hours)
 Part 2: Opium Alkaloids and *Papaver* species.
2. Studies on the Cinchona alkaloids (2x 3hrs)
4. Examination of Caffeine containing Products and Beverages.
5. Isolation of Valtrate from *Centranthus ruber*. Analysis of Commercially Available Valerian Preparations (2x 3 hrs)
6. Workshop on Plant poisons

STUDENT-LED SEMINARS (6 hours)
1. Student-led seminar: Bench to bedside seminar on Nature’s treatment for Depression and Irritable Bowel Syndrome.
2. Student-led seminar: Bench to bedside seminar on Nature’s treatment for Alzheimer’s disease.

DIRECTED READING
European Pharmacopoeia
Trease & Evans’ *Pharmacognosy* 16th Ed. WC Evans, Elsevier (2009)
Medicinal Natural Products 3rd Ed., PM Dewick, John Wiley & Sons (2009)

ASSESSMENT
Written paper: 3 hours; 3 Sections; 7 questions, 5 to be answered - one from each Section**
Practical Book reports: continuous assessment
Failure to comply with the instruction will result in a requirement to sit the Supplemental examination in Michaelmas term.

Weighting

| Written paper: 3 hours; 3 Sections; 7 questions, 5 to be answered - one from each Section** | 90% of total marks |
| Practical Book reports: continuous assessment | 10% of total marks |

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Seminars</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>27</td>
<td>6</td>
<td>81</td>
<td>27</td>
<td>102</td>
<td>210</td>
<td>10</td>
</tr>
</tbody>
</table>

SUMMARY OF HOURS
AIMS: To provide a continuation course in formulation and production, concentrating on sterile medicinal product and radiopharmaceuticals.

PRE-REQUISITES: Introduction to Pharmaceutics and Formulation module (PH1004), Formulation and Pharmaceutical Technology module (PH2004), Microbiology and Biochemistry module (PH2005)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Discuss the requirement for sterility for certain classes of pharmaceutical products.
- With respect to the formulation of the major classes of sterile products, such as injections, infusion fluids and eye drops, explain the necessity for certain classes of excipients (and packaging), and perform appropriate calculations in the formulation of these products.
- Describe the main sterilisation methods relevant to pharmaceuticals; define the common terms used when describing sterilisation kinetics.
- Summarise common tests and parameters measured in assessing the microbial/particulate quality of a sterile product and its environment, and of the sterilisation method used.
- Describe the main aspects of pharmaceutical clean room design, operation and environmental control, and summarise the applications of a clean room environment within a hospital/clinical pharmacy setting.
- Access and interpret basic compatibility information in the context of administration of parenteral products in a clinical setting.
- Discuss the testing and use of commonly used disinfectants and antiseptics.
- Discuss the applications of and risks associated with production and use of radiopharmaceuticals.

COURSE OUTLINE

Unit PH3004A: INTRODUCTION TO FORMULATION, TESTING AND USE OF STERILE PRODUCTS

LECTURES

1. Introduction; definitions; microbial limits for non-sterile pharmaceuticals; products required to be sterile; official categories in BP
 Lecturer: DD
2. Concept and requirement for isotonicity, calculation of isotonicity
 Lecturer: DD
3. Vehicles for parenteral medicaments; aqueous/non-aqueous;
 Lecturer: DD
4. Formulation of parenterals: buffers, antioxidants, preservatives
 Lecturer: DD
5. Electrolytes, LVP’s LVP’s – composition and use particulate contamination: clinical consequences compatibility?
 Lecturer: DD
6. Labelling: SVP, LVP
 Lecturer: DD
7. Ophthalmic preparations: approaches to ophthalmic drug delivery, solutions, suspensions, excipients - viscosity
 Lecturer: DD
8. Ophthalmic preparations – excipients – tonicity, preservative, buffer, stabiliser
 Lecturer: DD
 Lecturer: DD
 Lecturer: DD
Unit PH3004B: PHARMACEUTICAL PROCESSING FOR STERILE PRODUCTS

11. Sterilisation: Official procedures, kinetics, sterility concepts and resistance
12. Moist heat sterilisation – steam lethality, autoclave design and operation
13. Dry heat sterilisation, equipment, use, applications, heat resistance
14. Filtration sterilisation, filter testing, blow-fill-seal
15. Ionising radiation sterilisation
16. Gaseous sterilisation – introduction to validation
17. Validation and process monitoring (physical and biological indicators)
18. Sterility testing
19. Clean room: Intro, concept, aseptic services.
20. Clean room: sources of contamination, design
21. Clean room: operation, validation, standards, monitoring
22. Clean room/Aseptic services
23-25. Principles of disinfection 1-3

Unit PH3004C: RADIOPHARMACEUTICALS

26. Introduction to radiopharmaceuticals, modes of radioactive decay, radioactive units, calculation and use of decay constant/half life
27. Production of radioisotopes of pharmaceutical importance, instrumentation for measuring radioactivity
28. Gamma cameras, theory and use of generators for short-lived radioisotopes
29. Radionuclidic and radiochemical purity determination, radioimmunoassay

ADDITIONAL DIRECTED READING:
This will involve the student being directed towards specific reference sources and the following topics are covered by the student outside of direct lectures. These topics are examinable.

1. Endotoxins/pyrogens; pyrogen/endotoxin tests, limits
2. Packaging: glass, plastic, elastomeric closures
3. Principles of preservative efficacy test
4. Particulate tests – visible, subvisible, PhEur, BP

PRACTICAL CLASSES (3 hours each)
1. Sterile Products - Introduction, Packaging labeling (DD)
2. Sterile Products (DD)
3. Sterile Products (DD)
4. Sterile Products (DD)
5. Sterile Products (DD)
6. Revision lab before practical exam (DD)
7. Gaseous and radiation sterilization - (rotation) (SS) (2 hours)
8. Aseptic procedures –broth transfer trial (Aseptic Suite rotation) (SS) (2 hours)

Note: due to timetabling constraints the order in which the lectures are delivered may differ from the list above.

Sterile Products 2-5 examine aspects of parenteral and ophthalmic formulation, quality control tests and heat sterilization methods.
DIRECTED READING
European Pharmacopoeia
British Pharmacopoeia
Martindale
Micromedex
FDA and EU guides to production of sterile products – as indicated in lecture notes.

ASSESSMENT
Written paper: 2 hours, MCQs 70% of total marks
Practical Exam: 2 hours, 2 questions in 2 hours 20% of total marks
Practical Book reports: Continuous Assessment 10% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practical</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided + private study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>22</td>
<td>1</td>
<td>52</td>
<td>22</td>
<td>116</td>
<td>190</td>
<td>10</td>
</tr>
</tbody>
</table>

NB. Students are expected to satisfy the examiners in both written and practical examination components. The pass mark for the module is 40%. Students who obtain an overall mark of less than 40% will be required to sit the Supplemental examinations. Students who fail to satisfy the written requirement (i.e., less than 40%) in the annual examination, but who obtain a Class II or better in the practical examination will be returned as a ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e., less than 50% in the practical examination), but who obtain a Class III or better in the written section will be returned as a ‘qualified fail’ (QF) and will be required to supplement in the practical examination only. In addition to the practical exam, students are required to obtain at least 50% in the continuous assessment component of the course. If less than 50% in the continuous assessment component is achieved, the student will be returned as a ‘qualified fail’ (QF) and will be required to fulfill the continuous assessment requirements.
PHARMACEUTICAL DATA ANALYSIS AND BIOINFORMATICS
Year 3 (Junior Sophister) Course Code: PH3005

External contributor: Dr. Tim S. Grant (TSG)

Coordinator: Dr. Timothy Sean Grant / Asst. Prof. Astrid Sasse

AIMS: Students will encounter statistical ideas and methods during their careers as pharmacists in many different settings: in community surveys, clinical trials, laboratory practice, academic research, drug development and manufacture, as well as in epidemiological studies. The aim of this course is to introduce students to these ideas and methods, using a broad range of real examples to assist students better connect the information presented to the real application.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Discuss the importance and sources of variation in the data derived from surveys, drug development studies, epidemiological investigations, clinical trials, measurement systems, and drug manufacturing processes.
- Apply and understand the basic statistical methods that appear regularly in pharmaceutical and medical journals.
- Discuss critically the statistical sections that appear in their professional journals.
- Discuss the relationship between statistical methods and research methods and be able to critically identify which methods are most appropriate, the strengths and weaknesses, and elaborate on the statistical considerations required in study design.
- Carry out elementary analyses using a statistical package.

COURSE OUTLINE:

LECTURES (TSG)
The central core of the course will be based on the following list of topics:

1-7 Basic statistical concepts: populations versus samples, validity, variables, measurement, distributions, estimation and presentation of data to describe groups of individuals.

8-10 Hypothesis testing: parts of a hypothesis test, constructing a hypothesis test, logic underlying a hypothesis test, types of errors and power.

11-13 Simple comparative experiments: t-tests, confidence intervals, design issues.

14-16 Count data: measures, estimation and testing.

17-20 Comparative experiments with multiple groups: one-way analysis of variance (ANOVA), multiple comparisons.

21-22 Design and analysis of factorial studies of many system parameters simultaneously: two-way ANOVA.

23-24 Correlation and simple regression analysis

25-26 Multiple regression

27 General linear model and other topics.

WORKSHOPS / Practical Exercises (5x 2h): TSG
The material covered in the lectures will form the basis of a series of statistical laboratories, which will involve use of output from statistical packages. These will come towards the end of the semester, by which time a reasonable body of material will have been discussed in class. Most statistical packages produce essentially the same output, so students should be able to pick up very quickly other packages should they have need to do so in the future. Solutions to the classroom examples will be presented in the form of computer output, so, at the end of the course, students should have a strong grasp of how to interpret analyses presented in this way. Each practical exercise will include a continuous assessment assignment to be completed by each student.

1. Simple experiments
2. One-way ANOVA
3. Two-way ANOVA
4. Regression analysis
5. Multiple regression analysis
DIRECTED READING
The course will not be based on any one book; students will be given illustrative handouts of key methods
during the semester. The following are, however, useful references for particular aspects of the course.
They will also be useful where students need to go beyond the topics covered – for example, in their
Senior Sophister research project (PH4012) and dissertation (PH4007).

ASSESSMENT
Written paper
Continuous Assessment (Practical Exercise)

<table>
<thead>
<tr>
<th></th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Written paper</td>
<td>90% of total marks</td>
</tr>
<tr>
<td>Continuous Assessment (Practical Exercise)</td>
<td>10% of total marks</td>
</tr>
</tbody>
</table>

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals/Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>10</td>
<td>37</td>
<td>73</td>
<td>110</td>
<td>5</td>
</tr>
</tbody>
</table>
AIMS: To develop students’ understanding and knowledge of pharmacy practice particularly in epidemiology and public health, pharmacovigilance and pharmacoepidemiology, health economics and the principles of evidence-based assessment. To introduce students to the legislation concerning drugs that may be misused and animal remedies, and to the practical requirements when supplying and using medicines containing those drugs.

PRE-REQUISITES: See general pre-requisites for Junior Sophister year (page 71). Exceptions may be made in individual cases for one-year international students. Where components of this module are unsuitable for international students (e.g. the work experience component undertaken in the summer vacation preceding the Junior Sophister academic year), arrangements may be made for replacement by other relevant material on a case by case basis.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Describe epidemiology, the sources of data, the incidence of common conditions and their relationship to public health in Ireland.
- Explain the global burden of disease and role of international bodies in recording and responding to this challenge.
- Describe the research methods used in epidemiology, in clinical pharmacology and in assessing interventions.
- Discuss drug utilization and the monitoring and follow up of adverse drug reactions in Ireland and internationally.
- Describe key methods for estimating risk.
- Explain the different types of clinical trials, the importance of blinding and randomisation.
- Describe the use of ‘number needed to treat’ (NNT) data and the evidence-based approach to drug evaluation.
- Outline the significance of the scarcity of resources and the importance of accurate estimation of costs in economics and health economics.
- Distinguish between the various approaches to the evaluation of benefits including health-related quality of life (HRQoL).
- Discuss and critically appraise cost containment strategies for healthcare and pharmaceutical expenditure.
- Critically discuss legislation relating to drugs of abuse, clinical trials, animal remedies, poisons, health and safety, and data protection.
- Demonstrate the appropriate use of ophthalmic, nasal and aural medicinal products.
- Systematically collect, interpret and apply knowledge about patients, their conditions and their medicines, in order to provide and justify treatment recommendations and patient counselling, in a diverse range of patient case studies [more complex cases, requiring students to draw on a broader knowledge base, than those in preceding modules].
- Dispense mock prescriptions in accordance with legal, clinical, administrative, ethical and professional requirements [more complex prescriptions, requiring students to draw on a broader knowledge base, than those in preceding modules].
- Create and present a dissertation on an assigned topic that demonstrates critical assessment of relevant literature and the ability to argue a personal view, employing the conventions of academic writing.
COURSE OUTLINE:
Note: Due to timetabling constraints, the sequence of classes may differ from that below.

<table>
<thead>
<tr>
<th>LECTURES (33 hours)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction. Clinical skills and dissertation</td>
<td>MH</td>
</tr>
<tr>
<td>2 Feedback. Competencies, reflective practice and continuing professional development (CPD)</td>
<td>SR</td>
</tr>
<tr>
<td>3-6 Misuse of drugs legislation</td>
<td>SR</td>
</tr>
<tr>
<td>7-9 Animal remedies legislation</td>
<td>SR</td>
</tr>
<tr>
<td>10-11 Poisons legislation</td>
<td>SR</td>
</tr>
<tr>
<td>12 Data protection legislation</td>
<td>SR</td>
</tr>
<tr>
<td>13 Clinical trials legislation</td>
<td>SR</td>
</tr>
<tr>
<td>14-15 Health and safety legislation</td>
<td>SR</td>
</tr>
<tr>
<td>16 Epidemiology and descriptive data</td>
<td>MH</td>
</tr>
<tr>
<td>17 Epidemiology, causation and investigative methods</td>
<td>MH</td>
</tr>
<tr>
<td>18 Public health and antibiotic usage, resistance and policies</td>
<td>MH</td>
</tr>
<tr>
<td>19 Case studies and case control studies</td>
<td>MH</td>
</tr>
<tr>
<td>20 Cohort studies</td>
<td>MH</td>
</tr>
<tr>
<td>21 Clinical trials</td>
<td>MH</td>
</tr>
<tr>
<td>22 Clinical trials and meta-analysis</td>
<td>MH</td>
</tr>
<tr>
<td>23 Risk estimation</td>
<td>MH</td>
</tr>
<tr>
<td>24 Pharmacoepidemiology and pharmacovigilance</td>
<td>MH</td>
</tr>
<tr>
<td>25 Health service organisation and drug use control</td>
<td>MH</td>
</tr>
<tr>
<td>26 Evidence-based assessment of information</td>
<td>MH</td>
</tr>
<tr>
<td>27-29 Dispensing procedures, medication errors and risk management</td>
<td>KR</td>
</tr>
<tr>
<td>30-33 Pharmacoeconomics and health economics: costs, benefits and analysis techniques</td>
<td>TG</td>
</tr>
</tbody>
</table>

PRACTICAL CLASSES / WORKSHOPS (37 hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health economics and pharmacoeconomics (2h)</td>
<td>TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.1: Controlled drugs (2h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.2: Methadone and emergency supply of controlled drugs (2h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.3: Veterinary prescriptions and requisitions (2h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.4: Veterinary cascade, midwife’s written order, data protection (2h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.5: Hospital dispensing (2h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.6: Compliance devices and promotion of compliance (3h)</td>
<td>CR/KR</td>
</tr>
<tr>
<td>Dispensing and patient care 3.7: Ophthalmic, nasal and aural medicinal products (2h)</td>
<td>CR</td>
</tr>
<tr>
<td>Dispensing and patient care 3.8: Quality, safety and risk management (2h)</td>
<td>CR</td>
</tr>
<tr>
<td>Pharmacy practice practical test (1h timetabled; test duration: 50 mins)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Clinical skills 3.1 – Counselling patients on POMs (3h)</td>
<td>TG</td>
</tr>
<tr>
<td>Clinical skills 3.2 – Counselling patients on OTCs (3h)</td>
<td>MH</td>
</tr>
<tr>
<td>Clinical skills 3.3 – Clinical interviewing and responding to symptoms (3h)</td>
<td>MH</td>
</tr>
<tr>
<td>Clinical skills 3.4 – Identification and management of drug-related problems (3h)</td>
<td>TG</td>
</tr>
<tr>
<td>Objective structured clinical examination (OSCE): Required knowledge/skills and their evaluation (1h)</td>
<td>SR</td>
</tr>
<tr>
<td>Preparation for OSCE (2h)</td>
<td>MH/SR/KR/CR/TG</td>
</tr>
<tr>
<td>Assessment by OSCE (2h)</td>
<td>MH/SR/KR/CR/TG</td>
</tr>
</tbody>
</table>

TUTORIALS (5 hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispensing and patient care 3.1 feedback (1h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.2 feedback (1h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.3 feedback (1h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.4 feedback (1h)</td>
<td>SR/KR/CR/TG</td>
</tr>
<tr>
<td>Dispensing and patient care 3.5 feedback (1h)</td>
<td>SR/KR/CR/TG</td>
</tr>
</tbody>
</table>

DISSertation

<table>
<thead>
<tr>
<th>Activity</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review and critical analysis of topic associated with the JS course (3,000 word essay)</td>
<td>MH/guided study</td>
</tr>
</tbody>
</table>
WORK EXPERIENCE (35 hours, during a one week full-time period)

During the summer vacation between the Senior Freshman and Junior Sophister years, each student is required to undertake 35 hours of practice experience in a community or hospital pharmacy setting during a one week full-time period, i.e. the work experience is expected to take the form of a standard 5-day working week. Its satisfactory completion must be signed off by a registered pharmacist in the workplace, and the student must complete a structured work experience report. The student's report and pharmacist's declaration associated with this component must be submitted by the start of the Junior Sophister academic year, and they form part of the assessment for module PH3006, where they are graded as satisfactory/unsatisfactory.

This should not be confused with the work experience and associated exercises undertaken between the Junior Sophister and Senior Sophister years, which form part of the assessment for module PH4006. See advance notification at the end of this module descriptor.

ASSESSMENT

Each component must be passed (see notes below)

<table>
<thead>
<tr>
<th>Component</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination: 1.5 hours. Section A: 1 essay (from choice of 2). Section B: 40 MCQs (no choice; negative marking, +1/-0.25). Students must independently pass both Section A and Section B.</td>
<td>70% of total marks</td>
</tr>
<tr>
<td>Dispensing and patient care practical exercises; minimum 60% for each practical</td>
<td>7% of total marks</td>
</tr>
<tr>
<td>Pharmacy practice practical test; minimum 60% and no level 1 errors.</td>
<td>3% of total marks</td>
</tr>
<tr>
<td>Level 1 error: Automatic failure of the entire test, irrespective of the marks awarded.</td>
<td></td>
</tr>
<tr>
<td>Level 2 error: Zero marks for the question in which the error is made.</td>
<td></td>
</tr>
<tr>
<td>Level 3 error: Deduction of 41% of the maximum marks available for the question in which the error is made.</td>
<td></td>
</tr>
<tr>
<td>Level 4 error: Deduction of 20% of the maximum marks available for the question in which the error is made.</td>
<td></td>
</tr>
<tr>
<td>Level 5 error: Deduction of 10% of the maximum marks available for the question in which the error is made.</td>
<td></td>
</tr>
<tr>
<td>Level 6 error: Deduction of 5% of the maximum marks available for the question in which the error is made.</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td>20% of total marks</td>
</tr>
<tr>
<td>Clinical skills evaluation – satisfactory/unsatisfactory</td>
<td>---</td>
</tr>
<tr>
<td>Health economics/pharmacoeconomics evaluation – satisfactory/unsatisfactory</td>
<td>---</td>
</tr>
<tr>
<td>OSCE and associated exercises – satisfactory/unsatisfactory</td>
<td>---</td>
</tr>
<tr>
<td>Reflective continuing professional development e-portfolio – satisfactory/unsatisfactory</td>
<td>---</td>
</tr>
<tr>
<td>Work experience [35 hours during a one week full-time period in summer vacation between SF and JS years]: student's report and pharmacist’s declaration – satisfactory/unsatisfactory</td>
<td>---</td>
</tr>
</tbody>
</table>

NB: Students will be expected to draw upon knowledge and skills gained in this module when undertaking the Clinical Pharmacy Assessment that forms part of the evaluation for modules PH3009A, PH3010 and PH3011. Veterinary medicines legislation is also examinable in module PH3009. All aspects of pharmacy legislation, clinical skills, dispensing and patient care are also examinable in 4th year (Practice of Pharmacy theory papers, clinical skills, dispensing and patient care evaluations, practical test, OSCE).

SUMMARY OF HOURS (excludes work experience)

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals/workshops</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>37</td>
<td>5</td>
<td>75</td>
<td>15</td>
<td>35</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Pass mark, plagiarism

The pass mark for examinations and assessments is 40% except where otherwise indicated. See ‘Assessment’ above. Students should note that College penalties for plagiarism apply to both examinations and continuous assessment.

Late work

Continuous assessment exercises for this module must be presented for evaluation by the specified date(s). They must be presented to a designated member of staff in the manner requested (e.g., in person/by email/through the virtual learning environment), and signed in on the
form for this purpose where applicable. Work submitted late will not be assessed unless a valid reason is provided, and permission for late submission should be obtained in advance of the submission deadline from the staff member responsible for the continuous assessment component. Where late work with a valid excuse is accepted for assessment, a penalty may be applied (deduction of up to 60% of the maximum marks available for the component) with the effect that marks for the late work will not normally exceed the pass mark.

Missed classes/assessments

In common with other modules for the pharmacy degree, attendance at all scheduled classes for this module is compulsory. A student who is unable to attend a class for any reason must notify his/her tutor of the reason for absence without delay, and present certification as appropriate. However, all continuous assessment components must be completed even if the student is absent for a valid reason. It is the student’s responsibility to obtain details of the assessment for the missed class(es) from the relevant staff member without delay, and to complete it on a self-study basis. The deadline for submission of the completed assessment to the relevant staff member is five days from the student’s return to College (return date notified to staff member by tutor, based on certification as appropriate) unless otherwise agreed in advance with the relevant staff member. Where feedback on the assessment has already been provided to the class prior to submission, a penalty may be applied (deduction of up to 60% of the maximum marks available for the assessment), with the effect that marks for the assessment will not normally exceed the pass mark. See above for late submissions.

Progression and supplementals

Students must satisfy the examiners in each component of the module independently. A student may be returned as a ‘qualified fail’ (QF) and refused permission to progress with his/her class until he/she has satisfied the examiners in all components of the module. This may necessitate sitting a supplemental examination and/or repetition/(re)submission of one or more continuous assessment components (including submission of one or more alternative exercises that have been set to replace failed/missed continuous assessment components). In such circumstances, the marks available for the supplemental examination may be capped at the pass mark, while penalties may be applied to practical tests and/or other continuous assessment components (deduction of up to 60% of the maximum marks available for the relevant element(s)), with the effect that marks for such elements will not normally exceed the pass mark. This is separate from, and in addition to, any penalties imposed for level 1 to level 6 errors in the pharmacy practice practical test. (See ‘Assessment’ above.)

Non-satisfactory reports

Students who have not fulfilled the module requirements with regard to attendance and/or coursework may be reported to the Senior Lecturer as non-satisfactory for one or more terms. Students reported as non-satisfactory for the Michaelmas and Hilary terms may be refused permission to take their annual examinations and may be required by the Senior Lecturer to repeat the year.

Compensation

Because of the importance accorded to this aspect of the course by the PSI, who accredit the degree, it is not possible to compensate in this module.

Professional dress code

Students are required to dress appropriately and behave in a professional manner for elements of the course entailing attendance at external facilities (professional experience in pharmacies, case review in hospitals, health service facilities, etc.).

ADVANCE NOTIFICATION: Pharmacy Work Experience (Module PH4006)

During the summer vacation between the Junior Sophister and Senior Sophister years, each student is required to undertake 140 hours of practice experience in a community or hospital pharmacy setting during a four week full-time period, *i.e.* the work experience is expected to take the form of four standard 5-day working weeks. Its satisfactory completion must be signed off by a registered pharmacist in the workplace, and the student must complete a structured work experience report. Where agreed in advance with the Director of Undergraduate Teaching and Learning and the co-ordinators of modules PH4006 and PH4012, a student undertaking his/her final year research project (module PH4012) during the summer vacation may undertake the work experience component during the first four weeks of the Senior Sophister Michaelmas teaching term that are normally reserved for the research project. The student's report and pharmacist's declaration associated with the work experience component must be submitted by a specified date early in the Senior Sophister academic year, and they form part of the assessment for module PH4006, where they will be graded as satisfactory/unsatisfactory.
PHARMACEUTICAL BIOTECHNOLOGY II
Year 3 (Junior Sophister) Course Code: PH3008

Staff of School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof. C. Ehrhardt (CE), Asst. Prof. J.F. Gilmer (JG), Asst. Prof. F. Boylan (FB), Assoc. Prof L. O’Driscoll (LOD), Asst. Prof. D. Finlay (DF)

Coordinator: Assoc. Professor Lorraine O’Driscoll (LOD)

AIMS: To enhance the students understanding of the contribution of biotechnology to the development of therapeutics, outlining how bio-therapeutics are derived in the context of associated safety and quality systems. This course also considers the delivery and pharmacology of key bio-therapeutics, providing an overview of the bio-therapeutics value chain, i.e., the route from discovery to the patients.

PRE-REQUISITES: Pharmaceutical Biotechnology I (PH2008), Isolation & Analysis of Substances used in Medicines (PH2003), Cell and Molecular Biology (BY1101)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
- Demonstrate an understanding of the major therapeutic applications and categories of biopharmaceuticals;
- Explain how biotech products work in the body and their disposition and dosing;
- Recall how therapeutic proteins are purified and formulated;
- Explain how biological products are defined in law, regulated and qualified for release;
- Demonstrate knowledge of specific professional issues arising in the use of biotech products in pharmacy practice;
- Outline potential future directions in this rapidly changing area.

COURSE OUTLINE

LECTURES Lecturer
1 Biotherapeutics: value chain from discovery to pharmacological intervention. LOD
2 Development of antibodies as diagnostics & therapeutics LOD
3 Examples of Clinical Application of mAbs & their pharmacology LOD
4-8 Downstream processing DF
9-10 Formulation CE
11 Delivery of biotherapeutics CE
12 Pharmacology of recombinant proteins I (examples: hormones) LOD
13 Pharmacology of recombinant proteins II (examples: ILs; GFs) LOD
14 Enzymes: production & pharmacology LOD
15 Vaccines: production & pharmacology LOD
16 Other areas of therapeutic biotechnology & associated pharmacological implications (incl. cell therapy; stem cells) and pharmacology of biotherapeutic agents) LOD
17 Regulatory process for biotechs, definitions, biosimilars JG
18 ICHQ6B protein specification-, protein ID, content JG
19 Heterogeneity, purity & analytical approaches JG
20 Safety- viral safety/contamination Q5A LOD
21-22 Plant biotechnology FB
23 Pharmaceutical Biotechnology: Roadmap LOD
24-25 Pharmaceutical Biotechnology: Future Prospects LOD

Site visit to the National Institute for Bioprocessing Research and Training (NIBRT)
ASSESSMENT
Written paper - 2hrs - essay-type questions, short questions and MCQs

DIRECTED READING

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>NIBRT visit</th>
<th>Total contact</th>
<th>Visit reports</th>
<th>Guided + private study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3</td>
<td>28</td>
<td>3</td>
<td>69</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>
This module consists of two separate units:

PH3009A: Endocrine & Reproductive Pharmacology

AIMS: To provide the student with knowledge of the health sciences relevant to the use of drugs and medicines in endocrinology and reproductive endocrinology.

PH3009B: Veterinary Pharmacy

AIMS: To provide a review of aspects of veterinary physiology and pharmacology, veterinary formulation and use of veterinary medicines.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Discuss the abnormal functioning of the endocrine system, the tests and procedures used to assess those conditions and the role of drugs in the treatment of endocrine-related conditions
- Describe the pathology/symptoms, test & treatment for the different forms of diabetes
- Explain the use of show an ability to use, the drug delivery devices and monitoring devices associated with the treatment of diabetes
- Describe normal bone metabolism, of osteoporosis, Paget’s disease and hypercalcaemia, and their treatment
- Discuss the physiology and pathology of the reproductive system, including the actions and uses of drugs in the treatment of menstrual disorders, infertility, menopausal symptoms and as contraceptive preparations
- Apply knowledge to individual patient case studies
- Demonstrate delivery of pharmaceutical care as a member of a team
- Describe comparative anatomy & physiology & veterinary pharmacology
- Discuss formulation aspects of selected veterinary medicinal products
- Discuss aspects of veterinary Pharmacy in practice

PH3009A LECTURES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Endocrinology</td>
<td>LOD</td>
</tr>
<tr>
<td>2</td>
<td>Mechanisms of hormone action</td>
<td>LOD</td>
</tr>
<tr>
<td>3-5</td>
<td>Hypothalamus & pituitary gland; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>6</td>
<td>Thyroid & parathyroid glands; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>7-8</td>
<td>Bone metabolism & metabolic disease</td>
<td>FB</td>
</tr>
<tr>
<td>9-10</td>
<td>Reproductive endocrinology</td>
<td>FB</td>
</tr>
<tr>
<td>11</td>
<td>Endocrine pancreas</td>
<td>LOD</td>
</tr>
<tr>
<td>12</td>
<td>Type 1 diabetes: including symptoms & test</td>
<td>LOD</td>
</tr>
<tr>
<td>13</td>
<td>Type 2 diabetes: including symptoms & test</td>
<td>LOD</td>
</tr>
<tr>
<td>14</td>
<td>Insulins: formulations & delivery</td>
<td>LOD</td>
</tr>
<tr>
<td>15</td>
<td>Oral hypoglycaemics</td>
<td>LOD</td>
</tr>
<tr>
<td>16-17</td>
<td>Growth & Growth Hormone; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>18-19</td>
<td>Adrenal gland; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>20</td>
<td>Hormones of the GI; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>21</td>
<td>Hormones of the pineal gland; abnormalities, test and treatment</td>
<td>LOD</td>
</tr>
<tr>
<td>22-23</td>
<td>Hormonal contributions to malignancy & associated treatment</td>
<td>LOD</td>
</tr>
</tbody>
</table>
PRACTICAL (3 hours)
Drugs & devices for treatment of Diabetes MH

CASE STUDIES (16 hours total)
Clinical Case Study 1 TG/FB
Clinical Case Study 2 TG/LOD
Clinical Case Study 3 TG/FB
Clinical Case Study 4 TG/LOD

CASE STUDIES TUTORIALS (3 hours each)
Feedback on case study 1 TG/FB
Feedback on case study 2 TG/LOD
Feedback on case study 3 TG/FB
Feedback on case study 4 TG/LOD

DIRECTED READING – will be indicated, as relevant at each lecture

ENDOCRINE & REPRODUCTIVE PHARMACOLOGY ASSESSMENT

<table>
<thead>
<tr>
<th>Weighting</th>
<th>Exam paper (MCQs + Essay Qs), 2 hours</th>
<th>70% of total marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous assessment</td>
<td>20% of total marks</td>
</tr>
<tr>
<td></td>
<td>Clinical Pharmacy Assessment*</td>
<td>10% of total marks</td>
</tr>
</tbody>
</table>

*Clinical Pharmacy Assessment (Coordinator Assist. Prof. M.J. Santos-Martinez)
This assessment will take place in Hilary Term. It is an “open book” examination that includes case studies based on topics covered in all Pharmacology modules (PH3009, PH3010, PH3011). Students are required to demonstrate knowledge and understanding of the case study (including clinical pharmacology and practice of pharmacy: management and goals of therapy for a given disease state; parameters to be monitored/assessed; mechanism of action, side effects, contraindications and/or interactions of therapeutic agents; patient/carer counselling).

The pass mark for this Pharmacology module is 40%. The pass mark for each component (exam paper, continuous assessment and clinical pharmacy assessment) is 40%. It is a requirement to pass all 3 components.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practical</th>
<th>Case Studies</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>3</td>
<td>16</td>
<td>12</td>
<td>54</td>
<td>46</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>
PH3009B

COURSE OUTLINE: & LECTURER
1-2 Formulation of pharmaceutical veterinary preparations PBD
3 Comparative anatomy & physiology NF
4-8 Veterinary pharmacology NF
9 Veterinary medicines legislation CG

SEMINARS
Veterinary Pharmacy in community practice GB

DIRECTED READING
Veterinary Pharmacy, Kayne SB & Jepson MH, Pharmaceutical Press, 2004

VETERINARY PHARMACY ASSESSMENT
MCQ/short answer question examination (1 hr paper, no choice)

NB. Veterinary medicines legislation is also examinable in modules PH3006 and PH4006.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Tutorials</th>
<th>Seminars</th>
<th>Total contact</th>
<th>Guided + private study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-</td>
<td>1.5</td>
<td>10.5</td>
<td>12.5</td>
<td>23</td>
<td>1</td>
</tr>
</tbody>
</table>

Please note: students must pass each unit of this module. The pass mark for each unit is 40%.
AIMS: Students will learn basic pathophysiological principles of inflammatory, gastrointestinal and respiratory tract diseases and acquire the knowledge of pharmacological use of drugs used in these conditions.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Describe the basic anatomy and physiology of lungs and gastrointestinal tract
- Demonstrate the ability to recognise respiratory and gastrointestinal clinical symptoms
- Differentiate and classify several respiratory and gastrointestinal diseases
- Explain the mechanism of action of the different drugs used for the treatment of all those conditions
- Apply knowledge in advising and counselling patients with respiratory and gastrointestinal symptoms and make appropriate responses to presented symptoms
- Apply knowledge to individual patient case studies
- Demonstrate deliver pharmaceutical care as a member of a team

PRE-REQUISITES: Completion of Year 2

LECTURE OUTLINE
1. Introduction to respiratory pharmacology MS
2. Bronchodilators I MS
3. Bronchodilators II MS
4. Cromones and corticosteroids MS
5. Leukotriene antagonists and omalizumab MS
6. Anti-histamines and decongestants MS
7. Allergen immunotherapy MS
8. Antitussives, mucolytics, expectorants and pulmonary surfactants MS
9. Asthma MS
10. COPD MS
11. Introduction to clinical case studies TG
12. Introduction to gastrointestinal pharmacology CM
13. Control of acid secretion CM
14. Cytoprotective agents CM
15. Antacids CM
16. Histamine receptor antagonists CM
17. Proton pump inhibitors CM
18. Peptic ulcer disease CM
19. NSAIDs-related ulcers CM
20. GORD CM
21. Anti-emetics CM
22. Constipation CM
23. Diarrhoea CM
24. Irritable Bowel Syndrome CM
25. Inflammatory bowel disease I CM
26. Inflammatory bowel disease II CM
27. Coeliac disease CM
28. Alimentary Allergies & Lactose intolerance CM
29. Liver pharmacology I CM
30. Liver pharmacology II & Haemochromatosis CM
31. Pancreas and biliary tree CM
32. Cystic fibrosis CM
33. Pharmacological Research CM
CASE STUDIES (16 hours total)
Gastrointestinal pharmacology
- Upper GI
- Lower GI, Liver & Pancreas
Respiratory pharmacology
- Asthma
- COPD

PRACTICAL (2 hours)
Respiratory devices

TUTORIALS (4 hours total)
Feedback on case study 1
Feedback on case study 2
Feedback on case study 3
Feedback on case study 4

DIRECTED READING – will be indicated, as relevant at each lecture

ASSESSMENT
Exam paper (MCQs + Short Questions), 2 hours
Continuous assessment (Case Studies)
Clinical Pharmacy Assessment*

*Clinical Pharmacy Assessment (Coordinator Asst. Prof. M.J. Santos-Martinez)
This assessment will take place in Hilary Term. It is an “open book” examination that includes case studies based on topics covered in all Pharmacology modules (PH3009, PH3010, PH3011). Students are required to demonstrate knowledge and understanding of the case study (including clinical pharmacology and practice of pharmacy: management and goals of therapy for a given disease state; parameters to be monitored/assessed; mechanism of action, side effects, contraindications and/or interactions of therapeutic agents; patient/carer counselling).

The pass mark for this Pharmacology module is 40%. The pass mark for each component (exam paper, continuous assessment and clinical pharmacy assessment) is 40%. It is a requirement to pass each of the three components.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practical</th>
<th>Case Studies/ Tutorials</th>
<th>Total contact</th>
<th>Guided + private study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2</td>
<td>20</td>
<td>55</td>
<td>65</td>
<td>120</td>
<td>5</td>
</tr>
</tbody>
</table>
PRE-REQUISITES: Completion of Year 2

This Module is delivered in two Units, Unit A and Unit B.

UNIT A:

AIMS: The student will acquire knowledge of pharmacology relevant to the use of drugs and medicines in cardiovascular and thrombotic conditions and oedematous states.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:
• Describe the underlying pathology and aetiology of the varying forms of cardiovascular disease.
• Explain the various risk factors and how lifestyle behaviour can influence cardiovascular disease.
• Classify drugs used to treat cardiovascular disease and
• Describe their mechanism of action, their adverse effects and potential drug interactions and their clinical use.
• Describe the pathophysiology of the different forms of anaemia and their treatment
• Describe pathology and treatment of renal diseases and the use of diuretics
• Describe the physiology of lipid metabolism, the role of lipids in atherosclerosis and how drugs modify lipid metabolism and the clinical outcomes of atherosclerosis
• Describe mechanisms of haemostasis and thrombosis, pharmacology and therapeutics of classical and investigational antithrombotic drugs.
• Apply knowledge to individual patient case studies.
• Demonstrate delivery of pharmaceutical care as a member of a team.

COURSE OUTLINE:

CARDIOVASCULAR PHARMACOLOGY

LECTURES
1. Basic cardiovascular pharmacology
2. Renin-angiotensin system
3. Circulation and cardiac function
4. Circulation and cardiac function
5. Dysrhythmias
6. Dysrhythmias
7. Angina
8. Angina
9. Antihypertensive drugs
10. Antihypertensive drugs
11. Hypertension
12. Drugs used to treat congestive heart failure
13. Drugs used to treat congestive heart failure
14. Anaemia
15. Anaemia
16. Anaemia
17. Renal physiology and pathology
18. Diuretics
19. Diuretics
20. Lipids
21. Lipid-lowering drugs
22. Lipid-lowering drugs

Lecturer
NF
MR
MR
MR
23. Haemostasis and thrombosis MR
24. Anti-platelet drugs MR
25. Anticoagulants and fibrinolytics MR
26. Antithrombotics: clinical case studies MR
27. Platelet research ANO

CASE STUDIES (8 hours total)
Cardiovascular pharmacology: case studies 1 TG
Cardiovascular pharmacology: case studies 2 TG

SEMINARS (4 hours total)
Renal function and diuretics MR
Anti-thrombotic therapy case studies. MR

TUTORIALS (4 hours total)
Feedback on CV case study 1 TG
Feedback on CV case study 2 TG
Feedback on Renal function case study TG
Feedback on Anti-thrombotic case study TG

DIRECTED READING – will be indicated, as relevant at each lecture

ASSESSMENT

Weighting
Exam paper (2 hours, 100 MCQs) 70% of total marks
Continuous assessment (Case Studies) 20% of total marks
Clinical Pharmacy Assessment* 10% of total marks

*Clinical Pharmacy Assessment (Coordinator Assist. Prof. M.J. Santos-Martinez)
This assessment will take place in Hilary Term. It is an “open book” examination that includes case studies based on topics covered in all Pharmacology modules (PH3009, PH3010, PH3011). Students are required to demonstrate knowledge and understanding of the case study (including clinical pharmacology and practice of pharmacy: management and goals of therapy for a given disease state; parameters to be monitored/assessed; mechanism of action, side effects, contraindications and/or interactions of therapeutic agents; patient/carer counselling).

The pass mark for this Pharmacology module is 40%. The pass mark for each component (exam paper, continuous assessment and clinical pharmacy assessment) is 40%. It is a requirement to pass each of the three components.

Unit B: Inter-Professional Learning

AIMS: The aim of this course is to facilitate students understanding of the roles and priorities of all disciplines involved in patient care. It aims to improve awareness of how effective teamwork and communication can benefit patient care and outcome.

LEARNING OUTCOMES:
By the end of the course the student will be able to
• Justify the team members required to effectively manage a series of patient presentations
• Explain the role of members of the interdisciplinary team in the management of selected patient conditions.
• Demonstrate effective communication when discussing patient cases with an interdisciplinary student group.
• Justify how effective teamwork and communication can impact on patient care.
COURSE OUTLINE
Students will be presented with a series of case studies and required to work in small interdisciplinary groups. Case content will include patient histories incorporating stroke, rheumatoid arthritis and diseases of ageing. Students will be required to draw on learning from previous modules and combine with appropriate clinical skills to develop interdisciplinary management plans for selected patient cases.

INTERPROFESSIONAL CASE STUDIES (2x 1.5 hours)
Facilitated workshops using case based patient material. Small interdisciplinary groups designed to model working professional teams. Peer learning and tuition. Video based patient material supported by clinical documentation.

ASSESSMENT
Reflective writing assessment satisfactory/unsatisfactory

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Seminars</th>
<th>Case studies</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>46</td>
<td>64</td>
<td>110</td>
<td>5</td>
</tr>
</tbody>
</table>
SENIOR SOPHISTER (4th Year)

Module details may be subject to corrections/amendments.

- It is each student’s responsibility to be aware of dates, times, locations, etc. of lectures, tutorials, seminars and practical classes.

- Reports, continuous assessments and laboratory notebooks must be presented for assessment by the date specified by the examiner.

- Reports, continuous assessments and laboratory notebooks submitted after the specified date will not be assessed unless a valid reason is given, and students will be deemed not to have satisfied the School’s examination requirements.

PRE-REQUISITES: Completion of the Junior Sophister Year (Year 3)
AIMS: The aims of this course are to provide the student with an understanding of the role of pharmaceutical chemistry in contemporary drug design, discovery and development. The course provides a comprehensive overview of the concepts of modern medicinal chemistry as applied to selected major therapeutic drug classes and an introduction to the concepts and uses of prodrugs for enhanced delivery of drugs.

PRE-REQUISITES: Medicinal & Pharmaceutical Chemistry III (PH3002) and Natural Source of Drugs and Medicines (PH3003)

LEARNING OUTCOMES: On successful completion of the module the student should be able to:
- Discuss the general principles and applications of modern drug design
- Explain the pharmaceutical chemistry basis of current prodrug design and use
- Describe the molecular mechanism of action of antiviral and anticancer drugs and process of new drug development in these areas
- Summarise the regulatory requirements for characterization and specification of pharmaceutical materials
- Explain the relevance of pharmaceutical chemistry in the pharmaceutical industry and in drug development
- Demonstrate competence in specialised practical laboratory techniques used in the analysis of pharmaceutical products.

COURSE OUTLINE

LECTURES

Unit PH4002A: Drug discovery and design; Advanced quantitative structure-activity relationships and related topics: 7 lectures (JQ)
1. The Bilinear Model; Introduction, The McFarland Model
2. log P(πo)/ Transport Rate Constants
3. Three-dimensional Structure : topological Indices
4. Craig Plots
5. The Topliss scheme
6. Principal Component Analysis
7. The Free-Wilson Method

Unit PH4002B: Prodrugs: 7 lectures (JQ)
1. Carboxyl Groups; Ampicillin prodrugs, Butyric acid prodrugs, Cytodifferentiation in neoplastic cells, examples
2. Hydroxy derivatives: Timolol prodrugs, Introduction
3. Timolol Prodrugs: degradation Kinetics
4. N-Mannich bases: Structural effects on decomposition
5. N-Hydroxyalkyl and N-Acyloxyalkyl derivatives
6. Prodrugs of 5-fluorouracil: examples
7. Prodrugs of 5-fluorouracil: Lipophilicity & solubility data

Unit PH4002C: Agents acting on DNA; Medicinal chemistry of antiviral and anticancer pharmaceuticals: 10 lectures (MM)
1. Nucleoside and non-nucleoside antiviral agents active against DNA viruses
2. Production and stability of agents active against DNA polymerase
3. Nucleoside antiviral agents active against RNA viruses
4. Design, structure and function of clinical antiretroviral agents
5. Mechanism of action of protease inhibitors and antisense oligonucleotides
6. Mechanism of action and molecular targets for anticancer drugs; Alkylating agents and related drugs; stability and analogue design
7. Cisplatin and related organometallic agents
8. Intercalating agents, topoisomerase targeting and DNA chain cutting agents
9. Antimetabolite and hormone based anticancer agents
10. Antimitotic agents; current clinical drugs and future potentially useful drugs

Unit PH4002D: Drug Development and Regulatory Affairs (AS, JG, JQ, MM)
(9 lectures + 1 seminar, 11 hours total)
Regulatory affairs: Stability of drug substances and drug products (AS) (6 lectures)
1. ICH Q1 – Stability testing
2. Developing a stability indicating analytical method
3. Prediction of degradation pathways of drugs
4. Stress testing & forced degradation
5. Evaluation of stability data
6. Photostability testing
Advanced spectroscopic characterisation methods for drug substances (JG, AS), (2 lectures)
Methods in drug discovery: Ligand and Structure based drug design (MJM), (1 lecture)
Computer aided drug design: molecular modeling and review of calculation of molecular properties (JQ/CO'D) (1 seminar).

PRACTICALS (12 hours)
1. Analytical methods for penicillins (MJM)
2. Structure/activity case studies: Determination of partition and transport rate constants for drugs (JQ)
3. Insulin studies – Peptide Mapping (JG)
4. Product evaluation (AS)

DIRECTED READING
Principles of Medicinal Chemistry; Foye, Lemke and Williams; 7th Ed., Lippincott Williams & Wilkins, 2012
ICH Q1 –www.ich.org

ASSESSMENT
Written Examination Paper: 3 hours; 5 questions to be answered out of 5 (some internal choice may be available)
Practical: 25% of total marks

The practical mark is based on final reports (15%) and practical test (10%). The practical test of 75 min duration is held at the end of Michaelmas Term and takes the form of short answer and true/false questions based on the theory underlying the relevant practical classes of the Junior Sophister and Senior Sophister years.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Seminars</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Practical Reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2</td>
<td>12</td>
<td>47</td>
<td>8</td>
<td>66</td>
<td>121</td>
<td>5</td>
</tr>
</tbody>
</table>

N.B. Students are expected to satisfy the examiners in both written examination and practical components. The pass mark for examinations is 40%. Students who obtain an overall mark of less than 40% will be required to sit the supplemental examinations. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better in the practical section will be returned as a ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the practical requirement (i.e. less than 40% of the practical component) of the annual examination, but who obtain a Class III or better in the written section will be returned as a ‘qualified failed’ (QF) and will be required to resubmit in the practical component.
ECTOPARASITICIDES, NATURAL REMEDIES AND COMPLEMENTARY MEDICINE

Year 4 (Senior Sophister) Course Code: PH4003

Staff of the School of Pharmacy & Pharmaceutical Sciences: Asst. Prof F. Boylan (FB), Asst. Prof. A. Sasse (AS), Assoc. Prof. H. Sheridan (HS)

External Contributors: Practitioners of CAM

Coordinator: Assoc. Professor Helen Sheridan

Aims: In Section A of this module will provide the students with a detailed knowledge of Alternative Medicines and Traditional Herbal Medicines. The students will learn the differences between conventional medicines and complementary alternative medicines (CAM). In addition this course also provides the students with an overview of The European regulatory framework for Herbal Medicinal Plants (HMP’s), the importance of traditional Medicine in Global Health and the Millennium Development Goals (MDGs), the TRIPs agreement and bio-piracy as relating to traditional Medicinal Knowledge. The students will also be receiving three workshops to support the lectures they have received, including a practical introduction to Yoga and Meditation. In section B of this module the students will learn about human ectoparasite infestation (lice, scabies), the products used to treat infestation and the community response to infection outbreak. They will also learn about the significance of ectoparasite infection and disease transmission in the global context.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Explain the conceptual differences between conventional medicine and CAM.
- Describe the nature of therapies such as Reiki, Shiatsu, Naturopathy etc.
- Discuss the concepts underlying Homoeopathy.
- Explain differences between Medical Herbalism and Rational Phytotherapy.
- Evaluate the phytochemical, phytopharmacological and clinical evidence base for the efficacy of Herbal Medicinal Products (HMPs) used in Rational Phytotherapy.
- Evaluate the evidence base for the safety of HMPs, including drug-herb interactions.
- Understand current legislation relating to HMPs.
- Be familiar with the increasing importance of Traditional Medicine and its position in The Millennium Development Goals.
- Be aware of the importance of the TRIPs agreement and bio-piracy in Traditional Medicine.
- Explain the main types of human ectoparasite infestation.
- Advise on and critically assess the products used to treat and protect against ectoparasite infection.
- Analyse and critically assess the procedures for the control of infestation in residential care and acute hospital settings.
- Understand the importance of ectoparasite control in the context of disease transmission.

COURSE OUTLINE

LECTURES

PH4003: Section A
NATURAL REMEDIES, COMPLEMENTARY MEDICINE

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>Introduction. Traditional Medicine, Global Health and MDG’s</td>
</tr>
<tr>
<td>HS</td>
<td>The TRIPS agreement and Bio-piracy</td>
</tr>
<tr>
<td>HS</td>
<td>The European regulatory framework (HMP’s)</td>
</tr>
<tr>
<td>HS</td>
<td>Medicinal Herb Quality</td>
</tr>
<tr>
<td>HS</td>
<td>Medicinal Herb Quality</td>
</tr>
<tr>
<td>FB</td>
<td>Rational phytotherapy: Central Nervous System</td>
</tr>
<tr>
<td>FB</td>
<td>Rational phytotherapy: The Respiratory System</td>
</tr>
<tr>
<td>FB</td>
<td>Rational phytotherapy: The Digestive System</td>
</tr>
<tr>
<td>FB</td>
<td>Rational phytotherapy: The Cardiovascular System</td>
</tr>
<tr>
<td>FB</td>
<td>Rational phytotherapy: The Urinary System</td>
</tr>
<tr>
<td>FB</td>
<td>Case studies in phytotherapy</td>
</tr>
<tr>
<td>FB</td>
<td>Case studies in phytotherapy</td>
</tr>
<tr>
<td>FB</td>
<td>CAM: definitions, types and concepts</td>
</tr>
<tr>
<td>FB</td>
<td>CAM: uses</td>
</tr>
<tr>
<td>FB</td>
<td>CAM: Clinical evidence for the different types of CAM.</td>
</tr>
<tr>
<td>FB</td>
<td>Evidence base of ADR’s</td>
</tr>
</tbody>
</table>
PH4003: SECTION B
ECTOPARASITICIDES

1. Introduction
2. Human ectoparasites: Head lice, body lice and pubic lice
3. Human ectoparasites: Treatment and control of human ectoparasites.
4. Scabies: Treatment and control
5. Veterinary aspects of ectoparasite control
6. Ectoparasites and Transmission of disease
7. Insect repellents

WORKSHOPS:
Introduction to Yoga and Meditation (2 hours)
Workshop on an aspect of CAM (2 hours)
Workshop on an aspect of CAM (2 hours)

DIRECTED READING
Ectoparasiticides: Selected reading material will be given to students.
Kayne SB Homeopathic Pharmacy. 2nd Edn., Elsevier Edinburgh, 2006
HMP’s, TRIPs, MDG’s: Selected reading material will be given to students.

ASSESSMENT
Essay (2500 words) (Michaelmas term for submission February 1st) 40%
Two hour exam in Hilary term: Short essay type questions 60%

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Workshops</th>
<th>Case studies</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>6</td>
<td>2</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>
ADVANCED DRUG DELIVERY
Year 4 (Senior Sophister)
Course Code: PH4004

Staff of the School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof. C. Ehrhardt (CE), Prof. A. M. Healy (AMH), Asst. Prof. D. D’Arcy (DD), Asst. Prof. L. Tajber (LT), Prof. M.J. Meegan (MM), Assoc. Prof. T. Grimes (TG)

Coordinator: Assoc. Professor Carsten Ehrhardt

AIMS: To provide an overview on advanced drug delivery strategies, alternative routes of drug absorption for local and systemic delivery, including nucleic acid delivery. To familiarise the students with the anatomical and (patho)physiological particularities of those pathways, and in vitro models mimicking the respective biological barriers. To give an introduction to molecular pharmaceutics, including drug transporter biology and metabolic enzymes.

LEARNING OUTCOMES: On successful completion of this module, the student will be able to:

- Appreciate the impact of drug transporters and metabolic enzymes on limiting/enhancing drug bioavailability
- Recall alternative routes of systemic drug delivery
- Recall of the anatomical and (patho)physiological particularities of epithelial barriers of the skin, gastrointestinal tract and respiratory system.
- Appreciate basic principles of nucleic acid therapy and delivery.
- Recall the use of advanced polymers in drug delivery science.
- Recall the biopharmaceutical, formulation and manufacturing aspects of advanced delivery systems

PRE-REQUISITES: Pharmaceutical Biotechnology I-II, Physiology, JF-, SF-, JS-Pharmacology

COURSE OUTLINE:

<table>
<thead>
<tr>
<th>LECTURER</th>
<th>COURSE OUTLINE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Design of drug delivery systems 1-3</td>
</tr>
<tr>
<td>DD</td>
<td>4 Design of drug delivery systems 4</td>
</tr>
<tr>
<td>TG</td>
<td>5-6 Advanced polymers, polymers as drug carrier systems</td>
</tr>
<tr>
<td>MM</td>
<td>7-9 Particle manufacture in the design of advanced solid dosage forms</td>
</tr>
<tr>
<td>LT</td>
<td>10 Anti-sense technology</td>
</tr>
<tr>
<td>MM</td>
<td>11-14 Gene therapy</td>
</tr>
<tr>
<td>CE</td>
<td>15 In vitro methods for drug absorption studies</td>
</tr>
<tr>
<td>CE</td>
<td>16-17 Drug disposition after oral administration</td>
</tr>
<tr>
<td>CE</td>
<td>18-19 Drug transporters and efflux pumps</td>
</tr>
<tr>
<td>CE</td>
<td>20 Metabolic enzymes</td>
</tr>
<tr>
<td>CE</td>
<td>21 Biopharmaceutics Classification System</td>
</tr>
<tr>
<td>CE</td>
<td>22-24 Transdermal drug delivery</td>
</tr>
<tr>
<td>CE</td>
<td>25-26 Nasal drug delivery</td>
</tr>
<tr>
<td>CE</td>
<td>27-28 Pulmonary drug delivery</td>
</tr>
<tr>
<td>CE</td>
<td>29-32 Inhalation aerosols</td>
</tr>
<tr>
<td>AMH</td>
<td></td>
</tr>
</tbody>
</table>

DIRECTED READING (selection from the following)
- Martin’s Physical Pharmacy and Pharmaceutical Sciences, PJ Sinko, 6th Ed., LWW, 2010
- Biopharmaceutics Applications in Drug Development, R Krishna and L Yu (Eds.), Springer, 2007

ASSESSMENT
Written theory paper: 2 hours; MCQs and short answer questions; all to be answered

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0</td>
<td>32</td>
<td>70</td>
<td>102</td>
<td>5</td>
</tr>
</tbody>
</table>

102
AIMS: To provide a course on pharmacokinetics with its implications for the design and usage of medicines.

PRE-REQUISITES: Introductory Pharmaceutics (PH1004), SF and JS modules in Pharmaceutics & Pharmaceutical technology, Pharmaceutical Chemistry and Pharmacology

LEARNING OUTCOMES:

Learning outcomes PH 4005A. On successful completion of this module the student will be able to:
- Explain the rationale for employing different pharmacokinetic models to interpret biopharmaceutical data
- Employ appropriate pharmacokinetic equations to calculate basic pharmacokinetic parameters when presented with appropriate data
- Describe basic approaches to pharmacodynamic modelling

Learning outcomes PH 4005B. On successful completion of this module the student will be able to:
- Describe methods used to investigate and determine bioavailability and bioequivalence
- Interpret the relevance of biopharmaceutical aspects of a drug or dosage form in a physiological context

Learning outcomes PH4005C. On successful completion of this module the student will be able to:
- Relate the principles of pharmacokinetics to the role of the pharmacist in provision of patient care
- Identify common clinical situations where therapeutic drug monitoring principles should be applied
- Apply provided empirical pharmacokinetic equations to selected clinical scenarios to optimise dosing regimens with an emphasis on clinical outcomes.

Learning outcomes PH 4005D. On successful completion of this module the student will be able to:
- Describe the common metabolic processes of drugs
- Predict the metabolic products formed by drugs
- Discuss the role of metabolism in the modern drug discovery process

COURSE OUTLINE

LECTURES

Unit PH4005A: Basic Pharmacokinetics
1. Introduction 1 compartment bolus
2. AUC trapezoidal rule, clearance
3. 1 compartment infusion and multiple dosing
4. Extravascular 1 compartment single dose and multi-dose
5. Amount absorbed versus time plots: Wagner-Nelson method
6. Two compartment model. Bolus IV injection
7. Physiological modeling and NCA
8. Pharmacokinetics concepts continue
 Tutorial
9. Pharmacodynamics
Unit PH4005B: Biopharmaceutics

1. Bioavailability determination
2. Dissolution, bioequivalence and BCS
3. Design of bioequivalence studies
4. In vitro in vivo correlation
5. Biowaivers and measuring dissolution profiles
6. Effects of food on absorption

Unit PH4005C: Clinical Pharmacokinetics

6. Introduction to clinical pharmacokinetics
7. Role of renal function in pharmacokinetics
8. Worked examples - Digoxin
9. Role of hepatic function in pharmacokinetics- clearance and interactions
10. Role of hepatic function in pharmacokinetics- hepatic disease and PK
11. Worked examples- theophylline
12. Anti-epileptics and non-linear pharmacokinetics-clinical applications
13. Effects of ageing on pharmacokinetics

Unit PH4005D: Drug Metabolism

24. The process of drug Metabolism and ADME; metabolic enzymes
25. Phase I metabolism of drugs; the role of cytochrome P450;
26. Phase II metabolism of drugs; conjugation and detoxification
27. Metabolism studies in drug design and development

Practical Classes (3 Hours Each)

1. Basic Pharmacokinetics and Biopharmaceutics 1
2. Basic Pharmacokinetics and Biopharmaceutics 2
3. Basic Pharmacokinetics and Biopharmaceutics 3
4. Clinical Pharmacokinetics 1
5. Clinical Pharmacokinetics 2

Tutorials – One Tutorial on Pharmacokinetics (DD)

Directed Reading

Basic Pharmacokinetics, Jambhekar and Breen, Pharmaceutical Press 2009
Also selected papers which will be available via the blackboard 4005 module page.

Other suggested supportive information sources

Clinical pharmacokinetics, Concepts and Applications, Rowland and Tozer, LWW. 4th ed 2011
Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System;
Chi-Yuan Wu and Leslie Z. Benet; Predicting Drug Disposition via Application of BCS; Pharm. Res. 22:11-23; 2005
Doc. Ref.: CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **
FDA – Guidance for industry: Bioavailability and bioequivalence studies for orally administered drug products-general considerations
Relevant chapters of USP: 1088, 711.
FDA-Guidance for Industry-Dissolution testing of immediate release solid oral dosage forms (CDER 1997)
FDA-Guidance for Industry-Extended Release oral dosage forms: development, evaluation and application of in vitro in vivo correlations

104
ASSESSMENT

Theory written paper: 2 hours, MCQs plus 1 essay question
Continuous assessment of practical work

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>15</td>
<td>1</td>
<td>43</td>
<td>8</td>
<td>54</td>
<td>105</td>
<td>5</td>
</tr>
</tbody>
</table>

NB. Students are expected to satisfy the examiners in both written and practical examination components. The pass mark for the module is 40%. Students who obtain an overall mark of less than 40% will be required to sit the Supplemental examinations. Students who fail to satisfy the annual exam (i.e. less than 40% in the annual examination), but who obtain a class III (40%) or more in the continuous assessment component will be returned as a qualified fail (QF) and will be required to take a supplemental examination in the written examination only. Students who fail to satisfy the continuous assessment component (i.e., less than 40% in the continuous assessment component) of the module but who obtain a Class III (40%) or better in the annual examination will be returned as a qualified fail (QF) and will be required to fulfill the continuous assessment component requirements.
AIMS: To bring together key topics in pharmacy practice and to provide the range of understanding and practical knowledge necessary for the student both to practise satisfactorily under present circumstances and to respond to changes in the requirements of the health service and the profession.

PRE-REQUISITES: See general pre-requisites for Senior Sophister year (page 97). This module is not available for selection by one-year international students. In order to satisfy ECTS credit requirements, a one-year international student undertaking the Senior Sophister year may replace module PH4006 with a ‘Broad Curriculum’ module. (See http://www.tcd.ie/Broad_Curriculum/.) However, in such circumstances, the international student must take care to select a replacement module that does not give rise to timetable clashes with the Senior Sophister pharmacy modules that he/she is taking.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Critically discuss the provisions of IMB/HPRA legislation, medicinal products legislation, the Pharmacy Act and Pharmaceutical Society of Ireland rules/guidance, the law governing family planning and methylated spirits, and relevant EU legislation.
- Integrate changes in legislation covered earlier in the degree course with his/her existing knowledge, and critically discuss their content and implications for pharmacy practice.
- Systematically collect, interpret and apply knowledge about patients, their conditions and their medicines, in order to provide and justify treatment recommendations and patient counselling, in a diverse range of patient case studies [more complex cases, requiring students to draw on a broader knowledge base, than those in preceding modules].
- Supply medicines in accordance with mock prescriptions and other appropriate documents, identifying and managing the legal, clinical, administrative, ethical, professional and communication problems that are presented or that may arise after dispensing [more complex cases, requiring students to draw on a broader knowledge base, than those in preceding modules].
- Critically evaluate the ethical concepts underpinning professional dilemma scenarios, differentiate between professional and unprofessional action options, discuss the likely intentions underpinning questionable behaviours by pharmacists, and engage in collaborative learning, team work and group decision-making through a profession-specific dilemma.

COURSE OUTLINE:

Note: Due to timetabling constraints, the sequence of classes may differ from that below.

LECTURES (18 hours)

1 Feedback. Competencies, reflective practice and continuing professional development SR
2-7 Medicinal Products legislation and IMB/HPRA legislation SR
8-12 Pharmacy Act, PSI Rules/guidance, EU legislation SR
13 Family planning legislation, methylated spirits legislation SR
14-15 Legislation update SR
16-17 Review and integration of legislation SR
18 Ethics: Introduction to Intermediate Concept Measures (ICMs) CR

PRACTICAL CLASSES / WORKSHOPS (16 hours)

Dispensing and patient care 4.1: Review (2h) SR/KR/CR/TG
Dispensing and patient care 4.2: Review (2h) SR/KR/CR/TG
Dispensing and patient care 4.3: Review (2h) SR/KR/CR/TG
Dispensing and patient care 4.4: Review (hospital) (2h) SR/KR/CR/TG
Dispensing and patient care 4.5: Review (2h) SR/KR/CR/TG
Pharmacy practice mock practical test (1h timetabled; test duration: 50 mins) SR/KR/CR/TG
Ethics and professionalism: ICMs and the professional reasoning process (2h) CR
Ethics and professionalism: Intentions and influences (1h) CR
Ethics and professionalism: Exit DIT-2, competencies and CPD (2h) CR

TUTORIALS (7 hours)
CLINICAL ATTACHMENT (3 hours)
Clinical skills hospital attachment: medication history taking
MH/TG/ED/CK/NMcM

WORK EXPERIENCE (140 hours, undertaken during a four week full-time period)
During the summer vacation between the Junior Sophister and Senior Sophister years, each student is required to undertake 140 hours of practice experience in a community or hospital pharmacy setting during a four week full-time period, i.e. the work experience is expected to take the form of four standard 5-day working weeks. Its satisfactory completion must be signed off by a registered pharmacist in the workplace, and the student must complete a structured work experience report. Where agreed in advance with the Director of Undergraduate Teaching and Learning and the co-ordinators of modules PH4006 and PH4012, a student undertaking his/her final year research project (module PH4012) during the summer vacation may undertake the work experience component during the first four weeks of the Senior Sophister Michaelmas teaching term that are normally reserved for the research project. The student’s report and pharmacist’s declaration associated with the work experience component must be submitted by a specified date early in the Senior Sophister academic year, and they form part of the assessment for module PH4006, where they will be graded as satisfactory/unsatisfactory.

ASSESSMENT
Each component must be passed

Written examination (pharmacy law and professional requirements): 2 hours. (negative marking, +1/-0.25).
Section A - 2 essay/extended response questions. Section B - 50 MCQs. All questions are compulsory and students must independently pass both Section A and Section B. Note: Questions on this examination may draw upon material related to pharmacy law and professional requirements from any module of the B.Sc. (Pharm.) programme (all years).
Pharmacy law and professional requirements: guided study activities
Dispensing and patient care worksheets; minimum 60% in each worksheet. Note: Cases in the worksheets may draw upon material from any module of the B.Sc. (Pharm.) programme (all subjects, all years).
Pharmacy practice practical test (2 hours, 5 cases, no choice); minimum 60% and no level 1 errors.
Level 1 error: Automatic failure of the entire test, irrespective of the marks awarded.
Level 2 error: Zero marks for the question in which the error is made.
Level 3 error: Deduction of 41% of the maximum marks available for the question in which the error is made.
Level 4 error: Deduction of 20% of the maximum marks available for the question in which the error is made.
Level 5 error: Deduction of 10% of the maximum marks available for the question in which the error is made.
Level 6 error: Deduction of 5% of the maximum marks available for the question in which the error is made.
Note: Cases in the practical test may draw upon material from any module of the B.Sc. (Pharm.) programme (all subjects, all years).
Clinical attachment, including case presentation – satisfactory/unsatisfactory
Ethics and professionalism assessments
Reflective continuing professional development e-portfolio – satisfactory/unsatisfactory
Work experience [140 hours during a four week full-time period in summer vacation between JS and SS years]: student’s report and pharmacist’s declaration – satisfactory/unsatisfactory

Weighting
70% of module marks
5% of module marks
7% of module marks
3% of module marks

15% of module marks

SUMMARY OF HOURS (excludes work experience)

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals/workshops/clinical attachment</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>19</td>
<td>7</td>
<td>44</td>
<td>15</td>
<td>66</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Pass mark, plagiarism

The pass mark for examinations and assessments is 40% except where otherwise indicated. See ‘Assessment’ above. Students should note that College penalties for plagiarism apply to both examinations and continuous assessment.

Late work

Continuous assessment exercises for this module must be presented for evaluation by the specified date(s). They must be presented to a designated member of staff in the manner requested (e.g., in person/by email/through the virtual learning environment), and signed in on the form for this purpose where applicable. Work submitted late will not be assessed unless a valid reason is provided, and permission for late submission should be obtained in advance of the submission deadline from the staff member responsible for the continuous assessment component. Where late work with a valid excuse is accepted for assessment, a penalty may be applied (deduction of up to 60% of the maximum marks available for the component) with the effect that marks for the late work will not normally exceed the pass mark.

Missed classes/assessments

In common with other modules for the pharmacy degree, attendance at all scheduled classes for this module is compulsory. A student who is unable to attend a class for any reason must notify his/her tutor of the reason for absence without delay, and present certification as appropriate. However, all continuous assessment components must be completed even if the student is absent for a valid reason. It is the student’s responsibility to obtain details of the assessment for the missed class(es) from the relevant staff member without delay, and to complete it on a self-study basis. The deadline for submission of the completed assessment to the relevant staff member is five days from the student’s return to College (return date notified to staff member by tutor, based on certification as appropriate) unless otherwise agreed in advance with the relevant staff member. Where feedback on the assessment has already been provided to the class prior to submission, a penalty may be applied (deduction of up to 60% of the maximum marks available for the assessment), with the effect that marks for the assessment will not normally exceed the pass mark. See above for late submissions.

Progression to graduation, supplementals

Students must satisfy the examiners in each component of the module independently. A student may be returned as a ‘qualified fail’ (QF) and refused permission to progress to graduation with his/her class until he/she has satisfied the examiners in all components of the module. This may necessitate sitting a supplemental examination and/or repetition/(re)submission of one or more continuous assessment components (including submission of one or more alternative exercises that have been set to replace failed/missed continuous assessment components). In such circumstances, the marks available for the supplemental examination may be capped at the pass mark, while penalties may be applied to practical tests and/or other continuous assessment components (deduction of up to 60% of the maximum marks available for the relevant element(s)), with the effect that marks for such elements will not normally exceed the pass mark. This is separate from, and in addition to, any penalties imposed for level 1 to level 6 errors in the pharmacy practice practical test. (See ‘Assessment’ above.)

Non-satisfactory reports

Students who have not fulfilled the module requirements with regard to attendance and/or coursework may be reported to the Senior Lecturer as non-satisfactory for one or more terms. Students reported as non-satisfactory for the Michaelmas and Hilary terms may be refused permission to take their annual examinations and may be required by the Senior Lecturer to repeat the year.

Compensation

Because of the importance accorded to this aspect of the course by the PSI, who accredit the degree, it is not possible to compensate in this module.

Professional dress code

Students are required to dress appropriately and behave in a professional manner for elements of the course entailing attendance at external facilities (professional experience in pharmacies, case review in hospitals, health service facilities etc.).
This module is divided into five units.

AIMS: To bring together key topics in the Practice of Pharmacy and provide the range of understanding and practical knowledge necessary for the student to practise satisfactorily under present circumstances and to respond to changes in the requirements of the health service and the profession.

PRE-REQUISITES: Completion of Pharmacy Practice III (PH3006)

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Explain the roles and responsibilities of the Pharmacy Regulator and the implications of the Pharmacy Act 2007 for public safety and the development of the profession of pharmacy.
- Understand the principles of management science and discuss how they may be applied to pharmacy practice.
- Discuss the factors governing the financial control of a business and be able to analyse the financial statement of a business applying those factors.
- Discuss the value of a systematic approach to service introduction and delivery in pharmacy, justify the need for audit of service provision in pharmacy practice and evaluate available audit tools.
- Appreciate the views of external stakeholders on the roles and responsibilities of pharmacists and pharmacy in the provision of health services and the care of patients.
- Understand Irish Health Service policy and Medicines policy and review how they may influence pharmacy practice.
- Understand the principles of communications skills and demonstrate the application of those skills to pharmacy practice.
- Systematically collect, interpret and apply knowledge in order to make and justify treatment recommendations and patient counselling, individually and in groups, in patient case studies comprising a range of conditions and classes of medicines set in the context of various health care settings.
- Understand the relationship between pharmaceutical care, evidence-based practice and patient care outcomes.
- Demonstrate a knowledge of the methods used to manage the provision of medicines and discuss the principles of medication safety in the context of patient safety.
- Understand the principles of Programme Development and Health Services Research.
- Demonstrate the ability to search and retrieve literature of all types, to paraphrase the arguments and evidence retrieved, to evaluate material in a critical fashion and to argue a personal view based upon that evaluation, and to present a dissertation following the conventions of academic writing.
- Understand and apply the skills particular to one of the three main branches of pharmacy - community, hospital or industrial pharmacy to common problem types faced in those branches of practice.
UNIT PH4007A: Social pharmacy and population health

LECTURES (25 hours)

<table>
<thead>
<tr>
<th>No.</th>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Practice of Pharmacy Course and Context of Practice</td>
<td>MH</td>
</tr>
<tr>
<td>2-7</td>
<td>Communications Skills 1-6</td>
<td>MH</td>
</tr>
<tr>
<td>8</td>
<td>Sociology and Health Sciences</td>
<td>MH</td>
</tr>
<tr>
<td>9</td>
<td>Psychology and Health Psychology</td>
<td>MH</td>
</tr>
<tr>
<td>10</td>
<td>Biomedical model of health and illness</td>
<td>MH</td>
</tr>
<tr>
<td>11</td>
<td>Biopsychosocial model of health and illness</td>
<td>MH</td>
</tr>
<tr>
<td>12</td>
<td>Patient Compliance and Concordance</td>
<td>CR</td>
</tr>
<tr>
<td>13</td>
<td>Health Care Professional Compliance</td>
<td>CR</td>
</tr>
<tr>
<td>14</td>
<td>Health Behaviour change</td>
<td>CR</td>
</tr>
<tr>
<td>15</td>
<td>Motivational Interviewing</td>
<td>CR</td>
</tr>
<tr>
<td>16</td>
<td>Health promotion</td>
<td>KR</td>
</tr>
<tr>
<td>17</td>
<td>Health education</td>
<td>KR</td>
</tr>
<tr>
<td>18-21</td>
<td>Evidence-based pharmacy practice 1-4</td>
<td>TG</td>
</tr>
<tr>
<td>22-23</td>
<td>Medicines management and safety 1-2</td>
<td>TG</td>
</tr>
<tr>
<td>24</td>
<td>Medicines management and safety 3</td>
<td>TD (Ext)</td>
</tr>
<tr>
<td>25</td>
<td>Medicines management and safety 4</td>
<td>ER (Ext)</td>
</tr>
</tbody>
</table>

PRACTICALS (3 hours)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication skills</td>
<td>KR</td>
</tr>
</tbody>
</table>

UNIT PH4007B: Pharmaceutical care and clinical skills

LECTURES (2 hours)

<table>
<thead>
<tr>
<th>No.</th>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vulnerable patients in health care</td>
<td>BF (Ext)</td>
</tr>
<tr>
<td>2</td>
<td>Antimicrobial resistance and pharmacists’ role in antimicrobial stewardship</td>
<td>SE (Ext)</td>
</tr>
</tbody>
</table>

SEMINARS (26 hours)

<table>
<thead>
<tr>
<th>Seminar</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Promotion & Health Service Policy (2 hours)</td>
<td>SK (Ext)</td>
</tr>
<tr>
<td>Health Promotion programmes in Community Pharmacy Practice (2 hours)</td>
<td>KR</td>
</tr>
<tr>
<td>Disease screening & Standards of Practice in Pharmacy Practice (2 hours)</td>
<td>CR</td>
</tr>
<tr>
<td>Pharmaceutical Care – patient support groups 1 (2 hours)</td>
<td>CPI (Ext)</td>
</tr>
<tr>
<td>Pharmaceutical Care – patient support groups 2 (2 hours)</td>
<td>ICS (Ext)</td>
</tr>
<tr>
<td>Pharmaceutical Care – patient support groups 3 (2 hours)</td>
<td>DI (Ext)</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 1 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 2 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 3 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 4 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 5 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 6 (2 hours)</td>
<td>TG</td>
</tr>
<tr>
<td>Pharmaceutical Care & Therapeutics 7 (2 hours)</td>
<td>TG</td>
</tr>
</tbody>
</table>

COMPUTER-AIDED LEARNING (CAL)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaseInteract Assignments</td>
<td>JD (Ext)</td>
</tr>
</tbody>
</table>

UNIT PH4007C: Pharmaceutical policy and strategic management

LECTURES (20 hours)

<table>
<thead>
<tr>
<th>No.</th>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Management Science applied to Pharmacy</td>
<td>AN (Ext)</td>
</tr>
<tr>
<td>7-9</td>
<td>Business Management skills in pharmacy</td>
<td>CMcC</td>
</tr>
<tr>
<td>10</td>
<td>Drug Distribution in Ireland</td>
<td>GM (Ext)</td>
</tr>
<tr>
<td>11</td>
<td>Pharmaceutical Industry in Ireland</td>
<td>AN (Ext)</td>
</tr>
<tr>
<td>12</td>
<td>Irish Medicines Board – Marketing authorisations in Ireland and the EU</td>
<td>BD (Ext)</td>
</tr>
<tr>
<td>13</td>
<td>Irish Medicines Board – Compliance</td>
<td>KOD (Ext)</td>
</tr>
<tr>
<td>14</td>
<td>Irish Medicines Board – Pharmacovigilance</td>
<td>AMC (Ext)</td>
</tr>
<tr>
<td>15</td>
<td>Antimicrobial Stewardship: policies and practice</td>
<td>SE (Ext)</td>
</tr>
<tr>
<td>16</td>
<td>Health Service: HSE Policies & Programmes</td>
<td>KM (Ext)</td>
</tr>
<tr>
<td>17</td>
<td>PSI & the National Pharmacy Internship Programme</td>
<td>PSI (Ext)</td>
</tr>
<tr>
<td>18</td>
<td>National Pharmacy Internship Programme</td>
<td>RCSl (Ext)</td>
</tr>
<tr>
<td>19</td>
<td>Pharmacy, policy and the Pharmaceutical Society of Ireland</td>
<td>PSI (Ext)</td>
</tr>
<tr>
<td>20</td>
<td>Health Information and Quality Authority (HIQA) and health technology assessment</td>
<td>MR (Ext)</td>
</tr>
</tbody>
</table>
UNIT PH4007D: Pharmacy practice electives (Hilary Term)

SEMINARS (9 hours)

Community pharmacy elective (small group – 9 hours)
- Community Pharmacy 1: KR
- Community Pharmacy 2: KR
- Community Pharmacy 3: KR

Hospital pharmacy elective (small group – 9 hours)
- Hospital Pharmacy 1: ED
- Hospital Pharmacy 2: ED
- Hospital Pharmacy 3: ED

Industrial pharmacy elective (small group – 9 hours)
- Industrial Pharmacy 1: KOC
- Industrial Pharmacy 2: KOC
- Industrial Pharmacy 3: KOC

UNIT PH4007E: Dissertation

Dissertation Seminar: Health Informatics & Evidence-based literature review (3h) MH

Dissertation (5,000 word minimum essay) literature review and critical analysis of topic linked to Elective choice *i.e.*, Community, Hospital or Industrial Pharmacy (65h) Guided study

ASSESSMENT

Each component must be passed.

<table>
<thead>
<tr>
<th>Written examination: 3 hours. 5 essay questions</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A (PH4007A, PH4007B, and PH4007C): 4 questions out of 6.</td>
<td>60% of overall grade</td>
</tr>
<tr>
<td>Section B (PH4007D): 1 question out of 3. There is one question per elective.</td>
<td></td>
</tr>
</tbody>
</table>

Dissertation (PH4007E) 35% of overall grade

1Communication skills – role play and reflection (PH4007A) satisfactory/unsatisfactory

Coursework in *Pharmaceutical Care & Therapeutics* (PH4007B) 5% of overall grade

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Practicals</th>
<th>Seminars</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study (incl. CAL)</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>3</td>
<td>38</td>
<td>88</td>
<td>3</td>
<td>109</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

Students should note that College penalties for plagiarism apply to both examinations and continuous assessment.

A specific requirement of the course is that continuous assessment exercises must be presented for evaluation by the specified date(s). They must be presented to a designated member of staff and signed in on the form for this purpose. Work submitted late will not be assessed unless a valid reason is provided.

1Students must satisfy the examiners in all practical components of Units PH4007A and PH4007B. However, the marks obtained do not contribute towards the overall Practice of Pharmacy grade for the year with the exception of coursework in *Pharmaceutical Care and Therapeutics* (see above).

A student may be returned as a ‘qualified fail’ (QF) and refused permission to progress with their class until they have satisfied the examiners in each component of the course.

NB: Professional Dress Code

Students are required to dress appropriately and behave in a professional manner for elements of the course entailing attendance at external facilities (professional experience in pharmacies, case review in hospitals, health service facilities, etc.)
Staff of the School of Pharmacy & Pharmaceutical Sciences: Asst. Prof. F. Boylan (FB), Assoc. Prof. A. Harkin (AH), Asst. Prof. J. Gilmer (JG), Dr. D. Corrigan (DC), Assoc. Prof. C. Roche (CR), Asst. Prof. M.J. Santos-Martinez (MS). (Additional staff and postgraduates contribute to Unit PH4008B.)

Teacher-Practitioner: Ms. K. Rossi (KR)

External Contributors: Dr. M. Woods (MW), Mr. J. Bourke (JB), Dr. D. O’Driscoll (DOD)

Coordinators: Asst. Professor Fabio Boylan (PH4008A)
Assoc. Professor Cicely Roche (PH4008B)

This module consists of two separate units.

PH4008A: Addiction Pharmacy
AIMS: To provide the student with an understanding of the nature, extent and causes of problem drug-taking in Ireland in order that they can undertake professional activities as pharmacists in the prevention and treatment of drug dependence and other drug-related problems.

PH4008B: Integrated Pharmacy Skills
AIMS: To provide opportunity for students to experience satisfactory completion of OSCE stations under examination conditions.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Discuss the complexity of a drug taking problem.
- Describe neurochemical and psychopharmacological aspects of drug abuse.
- Discuss psychosocial aspects of drug abuse.
- Describe the role of the pharmacist in smoking cessation as well techniques available for same.
- Describe the main sources of drugs, and describe the pathophysiology of the major drug types.
- Discuss the National Drug Strategy and the role of the pharmacist in addressing Drug Misuse.
- Discuss the controls and protocols relating to the supply of methadone.
- Reflect on the experience of an OSCE workshop provided to mirror examination conditions.
- Peer review fellow-students’ completion of OSCE stations in facilitated workshops.
- Demonstrate competency in OSCE station completion under examination conditions.

COURSE OUTLINE

PH4008A: Addiction Pharmacy

LECTURES
1-3 Pharmaceutical Chemistry of the opioids, related peptides and receptors.
Lecturer: JG
4-6 Molecular and Cellular Mechanisms of Addiction
Ethanol Abuse, Dependence and Withdrawal. Alcoholism pharmacotherapy
Therapeutics for the treatment of cocaine and opiate addictions
Lecturer: AH
7-9 Cannabis, phytocannabinoids and pathophysiology of cannabis.
Lecturer: FB
10-11 Drug-related problems.
Lecturer: FB
12 Pharmacology of smoking cessation
Lecturer: MS

WORKSHOPS AND SEMINARS (16 hours)
1. Overview of the role of the pharmacist within the National Drug Strategy – 2 hours.
Lecturer: DC (CR)
2. Role of the pharmacist in preventing and addressing drug misuse– 2 hours.
Lecturer: CR
3. Psychosocial aspects of problem drug taking. 2 hours.
Lecturer: MW
4. Role of the pharmacist in smoking cessation – 2 hours
Lecturer: KS/CR
5. The Methadone Protocol in practice – 2 hours
Lecturer: DOD
6. Brief interventions – skills development – 2 hours
Lecturer: MW
7. Role of the pharmacist in harm reduction & team peer review session. – 2 hours
Lecturer: JB/CR
LABORATORY CLASSES (6 hours total)
Identification of Drugs of Abuse I-Cannabis
Identification of Drugs of Abuse II-Narcotics

DIRECTED READING
Wills S. Drugs of Abuse 2nd Edn, Pharmaceutical Press, London 2005

ASSESSMENT

- Written Paper (2 hours): Consists of 2 sections. 60% of the total
 - Section A: 3 Essay-type questions (answer 2 of 3) – 70%
 - Section B: 10 MCQs (negative marking to apply [+1/-0.25]) – 30%
- Seminar/Workshop reports 15% of the total
- Group wiki 15% of the total
- Lab Class Reports 10% of the total

N.B. Students are expected to satisfy the examiners each of the following: written examination, seminar/work reports and group wiki components of PH4008A. The pass mark for each component is 40%. Students who obtain an overall mark of less than 40% in these components will be required to sit the supplemental examination and/or resubmit coursework. Students who fail to satisfy the written requirement (i.e. less than 40%) of the annual examination, but who obtain a Class III or better will be returned as ‘qualified fail’ (QF) and will be required to take a supplemental examination in the written examination only.

PH4008B: Integrated Pharmacy Skills

LECTURES
1. Integrated Pharmacy Skills: Objective Structured Clinical Examination CR

WORKSHOPS AND SEMINARS
1. Introductory workshop including ‘practice’ OSCE and reflection (2 hours) CR & others
2. OSCE workshop including peer review (2 hours) CR
3. OSCE workbook SDL review seminar (1 hour) CR
4. OSCE exam preparation seminar (1 hour) CR

ASSESSMENT
Evaluation by OSCE (Satisfactory/Unsatisfactory)

International Erasmus Students are not expected to do the OSCEs component of this module. They will be required to do an alternative assignment in order to obtain the 5 ECTS for PH4008.

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th></th>
<th>Lectures</th>
<th>Seminars/Workshops</th>
<th>Practicals</th>
<th>Total contact</th>
<th>Practical reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH4008A</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>34</td>
<td>6</td>
<td>60</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PH4008B</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>18</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>22</td>
<td>6</td>
<td>41</td>
<td>6</td>
<td>78</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

PH4008A and PH4008B must be passed independently.
NEUROPHARMACOLOGY
Year 4 (Senior Sophister) Course Code: PH4009

Staff of the School of Pharmacy & Pharmaceutical Sciences: Assoc. Prof A. Harkin (AH)

Coordinator: Assoc. Professor Andrew Harkin (AH)

AIMS: To teach the principles of neuropharmacology and drug therapies for disorders of the central nervous system.

PRE-REQUISITES: SF and JS Pharmacology modules

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Discuss the diagnostic criteria and symptom presentation, biological basis and drug treatment of affective and anxiety disorders, insomnia, schizophrenia, drug dependence, pain, epilepsy, Parkinson’s and Alzheimer’s disease.
- Describe the mechanisms of action and clinical uses of local and general anaesthetic drugs
- Identify the pharmacokinetic characteristics and adverse effects associated with antidepressant, mood stabilising, anxiolytic, hypnotic, analgesic, anaesthetic, anticonvulsant, anti-Parkinsonian and cognitive enhancing drugs
- Discuss the neurobiological theory of CNS disorders and neurobiological adaptation to psychotropic drugs
- Assess and evaluate recent advances in the drug treatment of CNS disorders and provide an up to date insight into CNS drug development.

COURSE OUTLINE

LECTURES (AH)
1, 2 Depression (2 lectures)
3 Antidepressants
4 Mood stabilizers - Lithium
5 Anxiety disorders
6 Anxiolytics
7 Hypnotics
8 Schizophrenia
9, 10 Antipsychotics (2 lectures)
11 Neuropharmacology of addiction and drug dependence – reward circuitry
12 Anaesthetics (Local)
13 Anaesthetics (General)
14 Neuropharmacology of addiction and drug dependence – drugs of abuse
15 Epilepsy
16, 17 Anticonvulsant drugs (2 lectures)
18 Pain – nociception, spinal and supra spinal pain pathways
19, 20 Narcotic analgesics and Other CNS acting analgesics (2 lectures)
21 Parkinson’s disease
22 Anti-Parkinsonian drugs
23 Alzheimer’s disease
24 Drug treatment of Alzheimer’s disease
25 Brain ischemia and neuroprotection

TUTORIALS (4 x 2 hour) with Pharmaceutical Care and Clinical Skills (PH4007)
Tutorial 1: Pharmacotherapy of depression: focus on factors affecting choice of SSRI
Tutorial 2: Clinical use of analgesic drugs – choosing the right analgesic
Tutorial 3: Pharmacological strategies for the treatment of stroke
Tutorial 4: Neuropharmacology course review
DIRECTED READING
Brody's Human Pharmacology: Molecular to Clinical (4th Ed.) by K.P. Minneman
The Biochemical Basis of Neuropharmacology (8th Ed.) by J.R. Cooper, F.E. Bloom, R.H. Roth
Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd Ed.) by E.J. Nestler, S.E. Hyman, R. Malenka
Fundamentals of Psychopharmacology (3rd Ed.) by B. Leonard

ASSESSMENT:
Written Examination: 2 hours
Part 1, answer 3 questions out of 4 60% of total marks
Part 2, 20 multiple choice questions, answer all questions; negative marking scheme 40% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Tutorials/ Seminars</th>
<th>Total contact</th>
<th>Seminar reports</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>8</td>
<td>33</td>
<td>-</td>
<td>82</td>
<td>115</td>
<td>5</td>
</tr>
</tbody>
</table>
Aims: The student will acquire knowledge of the health sciences relevant to the use of drugs and medicines in the treatment of malignancy, and immunological disorders. The student will acquire knowledge of the pharmacological factors relevant to the pharmaceutical care of patients with selected conditions.

Learning outcomes: On successful completion of this module the student will be able to:

- Demonstrate the ability to recognise cancer symptoms
- Discuss the prevention of most frequent types of cancer in Ireland
- Discuss the principles of the chemotherapy of cancer and the approaches used to maximise efficacy
- Explain how side effects of cytotoxic drugs may be minimised
- Apply principles of palliative care when appropriate
- Explain the abnormal functioning of the immune system
- Describe the actions and uses of immunomodulators
- Describe the basic anatomy and physiology of skin and eyes
- Recognise skin and ocular symptoms
- Differentiate between eczema and psoriasis
- Describe the mechanism of action of the different drugs used for the treatment of skin and ocular disorders
- Advise and counsel patients with skin and ocular symptoms and make appropriate responses to presented symptoms

Pre-requisites: SF and JS Pharmacology modules

The module is comprised of two units:

Unit PH4011A: Treatment of Malignant Disease

Lecture outline (13 hours)

1. Cancer Pathogenesis
2. General Principles of action of cytotoxic drugs
3. Types of cancer: Solids and non-solids
4. Main type of solid cancers in Ireland
5. Alkylating agents
6. Anti-tumour antibiotics
7. Antimetabolites
8. Plant derivatives
9. Hormone therapy
10. Biological response modifiers
11. Treatment of side effects of chemotherapy
12. Palliative Care
13. Cancer Research

Unit PH4011B: Immunopharmacology

Lecture outline (16 hours)

1. Drug hypersensitivity
2. Treatment of drug hypersensitivity
3. Immunosuppression
4. Immunotolerance
5. Immunostimulation
6. Dermatopharmacology I
7. Dermatopharmacology II MH
8. Eczema MH
9. Psoriasis MH
10. Ocular Pharmacology I MH
11. Ocular Pharmacology II MH
12. Ocular Pharmacology III MH
13. Drug interactions I NF
14. Drug interactions II NF
15. Drug interactions III NF
16. Course assessment and review CM

SEMINARS/TUTORIALS
Mechanisms and adverse effects of immunomodulators in transplantation MR
Cancer chemotherapy CM + Clinical
Combination drug treatment in eczema and psoriasis MH

ASSESSMENT:
Written Examination: 2 hours
Part 1, answer 3 questions out of 4 60% of total marks
Part 2, 20 multiple choice questions, answer all questions;
negative marking scheme 40% of total marks

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Seminars/ Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>9</td>
<td>38</td>
<td>72</td>
<td>110</td>
<td>5</td>
</tr>
</tbody>
</table>
SENIOR SOPHISTER RESEARCH PROJECT
Year 4 (Senior Sophister) Course Code: PH4012

Staff of the School of Pharmacy & Pharmaceutical Sciences: Academic staff will supervise projects and participate in the panels which will assess the write-ups and presentations.

Project Coordinators: Asst. Professor Carlos Medina / Asst. Professor Astrid Sasse

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

- Explain the background to the chosen research area
- With individual support from an academic supervisor formulate the hypothesis to be addressed and select the means by which it is to be tested
- Generate and/or retrieve data and analyse it appropriately
- Demonstrate research skills relevant to their chosen area of research
- Plan and carry out practical work carefully and to a high standard
- Evaluate their research findings in the context of the current understanding of that area of research, and to do so in a balanced and concise way
- Prepare a report of the project in the form of (i) a well organised and well argued report and (ii) an oral presentation, demonstrating comprehensive understanding and critical interpretation of methodologies and data to set the research in context.

COURSE OUTLINE: Project options will be published at the beginning of September on the School Website. Students will rank ten favourite projects. Projects will be allocated according to preference and overall result in the JS year. Projects will take place in the first four weeks of Michaelmas Term. The four weeks will include both research and a large portion of the write-up. First drafts of the write-up are expected at the end of the four-week period. Each student will be required to give an oral presentation to the panel on their project which will be 10 minutes plus 5 minutes for questions.

Project write-up: 5,000-10,000 words - higher end for non-lab-based and lower end for lab-based projects.
Oral presentation: 15-minute oral presentation (10 mins for presentation + 5 mins for questions)

ASSESSMENT

<table>
<thead>
<tr>
<th>Project Supervisor</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance, commitment and engagement with project work</td>
<td>50% of total</td>
</tr>
<tr>
<td>Practical work</td>
<td></td>
</tr>
<tr>
<td>Presentation: Project write-up</td>
<td></td>
</tr>
<tr>
<td>Reference material employed for the project</td>
<td></td>
</tr>
<tr>
<td>Analysis of data</td>
<td></td>
</tr>
<tr>
<td>Conclusion and recommendations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation: Project write-up</td>
<td>50% of total</td>
</tr>
<tr>
<td>Reference material employed for the project</td>
<td></td>
</tr>
<tr>
<td>Analysis of data</td>
<td></td>
</tr>
<tr>
<td>Conclusion and recommendations</td>
<td></td>
</tr>
<tr>
<td>Oral Presentation</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Practical work</th>
<th>Total contact</th>
<th>Practical write-up</th>
<th>Guided study</th>
<th>TOTAL</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>120</td>
<td>60</td>
<td>20</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

Students may undertake an internal or external research project during the summer in between SF and JS or JS and SS years. Where approved in advance with the Director of Undergraduate Teaching and Learning, a student may use data acquired during a summer research project for PH4012. Such students will be assigned to an internal project supervisor by the Director of Undergraduate Teaching and Learning and are expected to submit a project write-up and make an oral presentation of their research to a panel as all other SS students. Students who have undertaken the research project during the summer in between JS and SS year may undertake the work experience component of PH4006 during the first four weeks of the Senior Sophister Michaelmas teaching term that are normally reserved for the research project.
GUIDELINES ON MARKING

YEAR 1 & 2 (FRESHMAN YEARS)

Guidelines on awarding grades for essays and examination answers in the freshmen years

<table>
<thead>
<tr>
<th>Class</th>
<th>Mark Range</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>70-100</td>
<td>Full understanding of concepts coupled with excellent knowledge of subject. Evidence of extra reading. A structured answer. Minor lapses of content or presentations tolerated at lower end of range.</td>
</tr>
<tr>
<td>II-1</td>
<td>60-69</td>
<td>Good understanding of concepts supported by broad knowledge of subject. A lapse of content or several lapses of detail are tolerated at lower end of range.</td>
</tr>
<tr>
<td>II-2</td>
<td>50-59</td>
<td>Understands basic concepts and has sound knowledge of subject. Suffers from more than one substantial omission, error or misunderstanding.</td>
</tr>
<tr>
<td>III</td>
<td>40-49</td>
<td>Limited understanding and knowledge of subject. Answer often lacks structure and suffers from omissions, errors and misunderstandings. Overall, a poor but adequate answer, or marginally adequate at bottom end of range.</td>
</tr>
<tr>
<td>F-1</td>
<td>30-39</td>
<td>Basic understanding and knowledge of subject is very poor. While some items of sound material may be presented the answer is inadequate.</td>
</tr>
<tr>
<td>F-2</td>
<td>0-29</td>
<td>Lacks understanding with little knowledge of subject. Answer contains few items related to question with many serious errors. Could also be taken as a response to the misinterpretation of the question.</td>
</tr>
</tbody>
</table>
GUIDELINES ON MARKING

YEAR 3 & 4 (SOPHISTER YEARS) AND SCHOLARSHIP EXAM

Guidelines on awarding grades for essays and examination answers in the Sophister years and the Scholarship examination

<table>
<thead>
<tr>
<th>Class</th>
<th>Mark Range</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>90-100</td>
<td>IDEAL ANSWER: showing insight and originality and wide knowledge. Logical, accurate and concise presentation. Evidence of reading and thought beyond course content. Contains particularly apt examples. Links materials from lectures, practicals and seminars where appropriate.</td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>OUTSTANDING ANSWER: falls short of the ‘ideal answer’ either on aspects of presentation or on evidence of reading and thought beyond the course. Examples, layout and details are all sound.</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>MAINLY OUTSTANDING ANSWER: falls short on presentation and reading or thought beyond the course, but retains insight and originality typical of first class work.</td>
</tr>
<tr>
<td>II-1</td>
<td>65-69</td>
<td>VERY COMPREHENSIVE ANSWER: good understanding of concepts supported by broad knowledge of subject. Notable for synthesis of information rather than originality. Sometimes with evidence of outside reading. Mostly accurate and logical with appropriate examples. Occasionally a lapse in detail.</td>
</tr>
<tr>
<td></td>
<td>60-64</td>
<td>LESS COMPREHENSIVE ANSWER: mostly confined to good recall of coursework. Some synthesis of information or ideas. Accurate and logical within a limited scope. Some lapses in detail tolerated.</td>
</tr>
<tr>
<td>II-2</td>
<td>55-59</td>
<td>SOUND BUT INCOMPLETE ANSWER: based on coursework alone but suffers from a significant omission, error or misunderstanding. Usually lacks synthesis of information or ideas. Mainly logical and accurate within its limited scope and with lapses in detail.</td>
</tr>
<tr>
<td></td>
<td>50-54</td>
<td>INCOMPLETE ANSWER: suffers from significant omissions, errors and misunderstandings, but still with understanding of main concepts and showing sound knowledge. Several lapses in detail.</td>
</tr>
<tr>
<td>III</td>
<td>45-49</td>
<td>WEAK ANSWER: limited understanding and knowledge of subject. Serious omissions, errors and misunderstandings, so that answer is no more than adequate.</td>
</tr>
<tr>
<td></td>
<td>40-44</td>
<td>VERY WEAK ANSWER: a poor answer, lacking substances but giving some relevant information. Information given may not be in context or well explained, but will contain passages and words, which indicate a marginally adequate understanding.</td>
</tr>
<tr>
<td>F-1</td>
<td>30-39</td>
<td>MARGINAL FAIL: inadequate answer, with no substance or understanding, but with a vague knowledge relevant to the question.</td>
</tr>
<tr>
<td>F-2</td>
<td>0-29</td>
<td>FAILURE: Lacks understanding with little knowledge of subject. Answer contains few items related to question with many serious errors. Could also be taken as a response to the misinterpretation of the question.</td>
</tr>
<tr>
<td>GUIDELINES FOR STUDENTS AT EXAMINATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The onus lies on each student to establish the dates, times and venues of their own examinations. No timetable or reminder will be sent to individual students by any office.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. An examination number is required for all undergraduate anonymously marked annual and supplemental examinations. A new anonymous examination number will be issued at the start of each academic year. Students must check their anonymous exam number on their personal portal page at mytcd.ie prior to the commencement of each examination session.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. You are expected to familiarise yourself with the location of every examination venue to which you have been assigned.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Mobile phones, or other electronic or communication devices, are not permitted in examination venues - if a phone rings or an alarm on a phone is heard, or it is discovered in any other way in the venue it will be confiscated. Confiscated materials may be retrieved from the Junior Dean’s Office, East Theatre (Monday, Wednesday, Friday: 9.30am-11.30am) on payment of a €35 fine per item. This fine is non-negotiable, and no appeals will be accepted by the Junior Dean or any of his Assistants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Students must follow the instructions given by the invigilators in a co-operative and respectful manner.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before entering an examination venue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Find your seat number on the seating list displayed outside and read the accompanying notices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Leave your personal belongings, including bags, coats, hats, etc at the designated place within or nearby your examination venue. Cloakrooms are available in the Arts and Hamilton Buildings for the safe-keeping of your personal belongings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. You will not be admitted to the examination after the first half-hour, and will not be allowed to leave during the last half-hour. If you arrive after the first half-hour, contact your College Tutor or his/her replacement as a matter of urgency. If your tutor is not available, contact the Senior Tutor’s Office.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While in an examination venue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Once you have entered a venue, complete SILENCE must be maintained at all times.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Each student must be in possession of their student ID card for each examination session. You should place your student ID card on the right-hand side of your desk for the duration of each examination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. A ‘Clean Desk’ policy applies for all formal examinations. In addition to pens, pencils, rulers, student ID card, etc. only materials permitted for an examination may be placed on the desk. Invigilators will be instructed to request students to remove any non-permitted items from their desk. Pencil cases and calculator covers are not permitted. Students are advised that random pocket searches may be conducted during an examination session. Upon request, students should remove all items from their pockets for scrutiny by an invigilator. Failure to empty pockets when requested is considered a disciplinary offence and will be referred to the Junior Dean.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Your attention is drawn to the CONDUCT OF EXAMINATIONS notice.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During an examination session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. You should check the title of the paper on your desk to ensure that it is the correct examination paper for your course, and read carefully all the instructions given.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. You are not allowed start your examination until instructed to do so by the invigilators. Please use any spare time at the start to fill in your answer book(s), remembering to complete the section at the bottom right-hand corner as requested before sealing the flap on every anonymous booklet used. Write legibly in ink – pencils are only allowed for OMR forms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. You will be advised of the time thirty minutes and ten minutes before the end of the examination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. If you wish to leave the examination venue at any stage during the examination you must be escorted by an Invigilator. If necessary you will be accompanied to a bathroom by an Invigilator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. If you wish to leave before the end of the examination you must hand your booklet(s) to an Invigilator and ensure you hand up everything you wish to have marked.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. If you are taken ill just before an examination and are unable to sit it, immediately contact your tutor or his/her replacement. If your tutor is unavailable, contact the Senior Tutor’s Office. If you feel unwell during your examination, please inform an Invigilator – you will be asked if you wish to go to the College Health Centre and will be accompanied by an Invigilator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Smoking breaks are not allowed during examination sessions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Dictionaries and Programmable calculators are not permitted at examinations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On completion of an examination session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. You will be advised that:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• you must immediately stop writing and hand up your booklets when instructed to do so by an Invigilator;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• you should ensure that all of your answerbooks are labelled correctly with your examination number (where appropriate), seat number and all other required information;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• it is your responsibility to hand in everything you wish to have marked by ensuring all materials are fastened securely with a treasury tag;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• you must remain in your seat until all scripts have been collected;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• you must not remove from the examination venue answer books, rough work, or other materials supplied.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 While every effort will be made to give due notice of major changes, the College reserves the right to amend the examination timetable.

https://www.tcd.ie/academicregistry/exams/assets/local/guideexam.pdf
CONDUCT OF EXAMINATIONS

Except as provided for below, candidates for examination are forbidden during an examination to do or to attempt to do, any of the following: to have in their possession or consult or use any books, papers, notes, memoranda, mobile phones or written or electronic material of any nature, or to copy from or exchange information with other persons, or in any way to make use of any information improperly obtained.

Where the examination is of such a nature that materials are provided to the candidates, or where the candidates are allowed by the rules of that examination to have materials in their possession, then candidates may of course make use of such materials, but only of such materials, and the general prohibition above continues to apply in respect of any and all other materials.

Where candidates have the prior written permission of the examiner(s), of the Senior Lecturer, or of the Disability Officer, to have materials in their possession during an examination, then candidates may of course make use of such materials, but only of such materials, and the general prohibition above continues to apply in respect of any and all other materials.

Where candidates are allowed to bring personal belongings into the examination venues upon condition that such belongings are stored in an area – such as the back of the venue – away from the area in which the candidates are sitting their examinations, then candidates may bring personal belongings into the hall, provided that they are placed in the indicated area and are not returned to by the candidates until they have finished their examinations and are leaving the hall.

Any breach of this regulation is regarded as a major offence for which a student may be expelled from the University.

Students must not leave the hall before the time specified for the examination has elapsed, except by leave of the invigilator.

Examinations or other exercises which are part of continuous assessment are subject to the same rules as other College examinations. Where submitted work is part of a procedure of assessment, plagiarism is similarly regarded as a major offence and is liable to similar penalties.

Senior Lecturer

https://www.tcd.ie/academicregistry/exams/assets/local/guideexam.pdf